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CHAPTER 1. INTRODUCTION 

In a fluid, the steady state transport (flux) of mass, 

linear momentum and kinetic energy is known to be related 

to gradients in concentration (for mixtures), velocity and 

temperature if the gradients are not too large. The linear 

phenomenological coefficients relating the fluxes to the 

gradients are known as transport coefficients. In general 

the fluxes act to dissipate the gradients. The elementary 

mechanism of this drive toward uniformity is that an aver­

age particle carries properties determined by the local 

equilibrium at the beginning of its mean free path to the 

end. Particle collisions regulate the flux by determining 

the mean free path length. Hence it is apparent that the 

transport coefficients are determined by the collision 

events and, therefore, by the intermolecular potential. 

Brush (1), in a survey, points out the hope which 

existed at one time that an interaction potential derived 

from transport properties would be of a universal form 

governing all molecular interactions. This universal po­

tential was envisioned by Newton (2) as a microscopic analog 

of the gravitational potential. However, experimental evi­

dence from transport and other properties has accrued to 

demonstrate the impossibility of such a universality at 

such a relatively simple level. In the modern view inter-
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molecular potentials can be computed from wave mechanics. 

Since transport properties are of primary concern to us, 

we do not search for universality but confine ourselves to 

the study and prediction of only these properties. In the 

process we use the simplest interaction model \diich cor­

responds closely enough to reality to accomplish the task 

at hand. 

An exact analysis of transport phenomena in a gas be­

gins with the fact that any flux Jp of a property p at a 

macroscopic point in a dilute gas can be written as 

Jp= < p y. 7 (1.1) 

where ̂  is the velocity of a particle in the system, is 

the streaming velocity at the point, and <«.? signifies an 

average of the value of a. over all molecules at that point. 

It is necessary in applying Equation 1.1 to have a func­

tional form for the distribution of molecules with respect 

to position, linear momentum and internal states. Assum­

ing molecules to interact through a central force potential 

and using classical mechanics, Boltzmann (3) derived a 

closed integrodifferential equation for this distribution 

function. Chapman (•+) and Enskog (̂ ) independently obtained 

a particular (normal) solution to Boltzmann's equation by a 

judicious expansion of the singlet distribution function in 

a series whose zeroth order term is the local equilibrium 
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singlet distribution function and \Aiose higher order terms 

describe distortions from equilibrium which are due to 

gradients in the macroscopic field. 

The significance of this normal solution can be seen 

by considering a system in some arbitrary distribution. 

If the environment of the system is uniform, the system 

relaxes, within a time of the order of the inverse of the 

collision frequency, to its normal state which is described 

by the Maxwell-Boltzmann equilibrium distribution function. 

If the environment is nonuniform, the system relaxes, also 

within a time of the order of the inverse of the collision 

frequency, to a normal state which is characterized by 

molecular migration lAiich tends to dissipate spatial non-

uniformity. This dissipation is modulated by collision 

processes which tend to maintain a local Maxwell-Boltzmann 

distribution. The normal state is that described by the 

Chapman-Enskog normal solution. 

The Ghapman-Enskog method leads to expressions for the 

transport properties in terms of collision integrals, which 

are various averages of the collision cross section. They 

are dependent on the collision interaction model. We will 

use a modified form of the Boltzmann equation, with the 

Chapnan-Enskog solution, to analyze experiments for which 

the internal structure of the molecules is important. 

The first such phenomenon vdiich we analyze is the 
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alteration of thermal conductivity (relating energy flux to 

the temperature gradient) and viscosity (relating linear 

momentum flux to the streaming velocity gradient) of a 

diamagnetic diatomic or polyatomic gas by the action of 

an applied magnetic field. These phenomena are referred 

to as Senftlehen-Beenakker effects after Senftleben (6), 

who discovered the magnetic field effect on the thermal 

conductivity of a paramagnetic gas (Og), and Beenakker (7), 

who initially found this effect in viscosity of diamagnetic 

diatomic gases (Ng and CO). For diamagnetic molecules 

(vihich is the case we study) there is a small net magnetic 

moment, due to molecular tumbling, which precesses about 

the field. This precession causes an increase in the col­

lision cross section and hence a decrease in the transport 

coefficients. Much of the experimental work on the 

Senftleben-Beenakker effect has been reviewed in articles 

by Beenakker (8, 9). The particular Senftleben-Beenakker 

effect measurements of concern in this work are contained 

in References 10-15. The reason that internal structure is 

important in this case is that the field partially destroys 

an anisotropy in the angular momentum distribution "vrtiich 

affects the transport properties. This anisotropy is caused 

by macroscopic field gradients; it cannot be produced if 

the molecules do not have internal structure and hence do 

not suffer nonspherical collisions. 
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The second phenomena we study is thermal diffusion in 

isotopic binary mixtures of CO. The thermal diffusion co­

efficient is the factor of proportionality between the flux 

of mass and the temperature gradient. There is no simple 

picture for thermal diffusion because it depends on the 

mean free path of both the thermal conductivity and the 

diffusion processes. Cowling (1̂ -) has given a lengthy 

"elementary" interpretation of thermal diffusion. The 

measurements we use were made by Boersma-Klein and deVries 

(15) over a temperature range for which this property in­

verts (i.e., the direction of the mass flux along the 

gradient is reversed) for all mixtures studied. The reason 

that internal structure is important in this case is that 

the effect is observed in mixtures whose components have 

the same total mass but unequal mass distribution. 

The effect of translational degrees of freedom on 

transport can be dealt within the scope of a classical 

theory (i.e., the Boltzmann equation). The effect of 

rotational degrees of freedom on transport is quantum 

mechanical in origin (for vdiich a new formulation is neces­

sary) but can be treated approximately in the classical 

limit. The vibrational degrees of freedom are not important 

in transport at ordinary temperatures because vibrational 

spacing is large compared to -tT (where •%. is Boltzmann's 

constant and T is the local temperature). Thus nonspherical 
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models with rotational structure are sufficient to account 

for the important effects in the cases we study. 

The first attempts to formulate a quantum mechanical 

kinetic equation were made for spherical models (16). In 

this work a quantum mechanical cross section was substi­

tuted for the classical mechanical cross section in the 

Boltzmann equation. In the same way Wang-Chang and 

uhlehbeck (17) extended the Boltzsnann equation for molecules 

with rotational degrees of freedom. In the latter case, 

the equation is merely an extension beyond the classical 

limit and does not rigorously follow from quantum mechanics. 

Waldmann (18) and Snider (19) have derived a rigorous 

quantum mechanical generalization of the Boltzmann equa­

tion which properly takes into account rotational structure. 

McCourt and Snider (20, 21) have shown how the Waldmann-

Snider equation can be applied to the analysis of the 

Senftleben-Beenakker effects. 

Although the quantum mechanical generalization of 

transport theory has been made, we use a classical theory. 

The advantage of this latter theory is that it reproduces 

the major features of the experiments studied and it is 

still relatively easy to apply. As a starting point for 

the classical approach, a generalized Boltzmann equation 

for molecules with internal states is needed. The first 

modification of the Boltzman equation in this direction 
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was made by Pidduck (22) for the rough sphere model (rough 

spheres are rigid spheres which collide without slipping). 

Although this model has collisionally active rotational 

degrees of freedom, it is unrealistic in that the molecular 

forces and torques are not determined solely from the 

molecular configuration. Curtiss (23), in his original 

attempt to develop a general classical theory to account 

for orientation dependence of the interaction potential, 

did not allow for the nonequilibrium distortion of the 

distribution function to contain any anisotropy in the 

angular momentum. As a consequence no Senftleben-Beenakker 

effects are predicted. Kagan, and Afanas'ev (240 were the 

first to correct this restriction of Curtiss. Since then 

many contributors have improved the derivation of exten­

sions of the Bolt2anann equation and have refined their ap­

plication (see, for instance, the review by Dahler and 

Hoffman (25))* We use the formulation of one of the more 

recent of these works by Hoffman and Dahler (26). 

Rigid, classical, convex bodies of revolution have 

been applied as models to the calculation of the Senftleben-

Beenakker effect. Klein et al. (27) have used rough spheres 

as a molecular model and loaded spherocylinders (28) (a cyl­

inder whose flat ends are replaced by hemispherical caps of 

the same radius as the cylinder) to model linear molecules. 

The latter model was a substantial improvement for linear 
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molecules. Cooper and Hoffman (29) have found the loaded 

rigid ellipsoid to be a more versatile model for linear 

molecules. 

The classical model used by Sandler and Dahler (30) 

to calculate thermal diffusion in a Dg-HD mixture was the 

loaded rigid sphere. For the same phenomenon in binary 

mixtures of CO isotopes, Matzen et al. (3I) have applied a 

rigid ellipsoid model. Rigid models were found to fit 

these data fairly well at a single high temperature but 

could not correctly predict the temperature dependence. 

Though we apply classical, nonspherical col­

lision models to transport analysis, other methods have 

been used in regard to the same phenomena. Kohler (32) 

has performed a quantum mechanical model calculation of 

Senftleben-Beenakker effects using the distorted Born 

wave approximation. The collision model used was that of 

two ellipsoids which are repelled by a constant force when 

they touch or overlap but do not otherwise interact. A 

second method is that of a classical trajectory calculation 

in vdiich collisions are simulated for all conditions by 

computer instead of being solved analytically. In this 

manner van de Ree and Scholtes (33a) have calculated dif­

fusion and thermal diffusion in HD-D̂  using a loaded soft 

sphere model for BD and a central soft model for Dg» Malone 

(in Reference 33b) has also done trajectory calculations 
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on ED. 

In Chapter 2 we review the derivation of the non-

spherical Boltzmann equation as given in Reference 26. 

In Chapter 3 we review the Chapman-Bnskog solution as 

given for the case of the Senftlehen-Beenakker effect in 

Reference 29 and for the case of thermal diffusion in 

isotopic binary mixtures in Reference 31. The Onsager-

Casimer relations are also proven within the context of 

this formulation. 

In order to apply a model in the Chapman-Enskog method, 

one always has to evaluate collision integrals. The prob­

lems in doing this are first to derive a form for the col­

lision cross section and second to perform the integrations 

over colliding particles' momenta and orientations. In 

Chapter h we give forms for the cross section for both soft 

spheres and rigid ovaloids. We generalize these results by 

approximating the form of a generalized cross section for a 

nonspherical soft model to include attributes of the two 

limiting cases of soft spheres and rigid ovaloids. The as­

sumed form of the generalized cross section can be related 

to a Kihara (3̂ ) type collision model for which the mole­

cules are assumed to possess generally shaped cores which 

interact through a soft potential. This potential is de­

termined by the shortest distance between the cores. The 

significance of the cores is that when they touch the 
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potential is zero. Hoffman (35) has shown for rigid ovaloid 

models how the momentum integrations of the collision in­

tegrals can be performed. We apply this method to the 

momentum integrations for the general soft model. We also 

extend this work on rigid convex models to derive a more 

convenient form for the results of the momentum integra­

tions . 

In Chapter 5 we show the details and results of the 

application of a rigid convex model to the calculation of 

the Senftleben-Beenakker effect on molecules. The 

separation of the integrand in order to facilitate the 

orientation integrations is given. The parameters of the 

model are optimized and the resulting fits of the data are 

found to be comparable to those of Cooper and Hoffman (29) 

on linear molecules. 

In Chapter 6 we show the results of the application of 

the soft ellipsoidal model to the phenomenon of thermal dif­

fusion in binary isotopic mixtures of CO. The parameters 

ture of the data (15)• Using the same parameters, thermal 

conductivity of pure CO is matched exactly and isotopic 

binary diffusion is matched fairly well. 
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CHAPTER 2. DERIVATION OF THE BOLTZMAM EQUATION 

Hoffman and Dahler (26) have derived a Boltzmann equa­

tion for classical particles with translational and rota­

tional degrees of freedom. What appears here is an expanded 

version of that treatment. It is included here for com­

pleteness. 

For simplicity we consider a system containing a sin­

gle species. We define a 12-N dimensional phase space whose 

points specify the linear and angular coordinates of posi­

tion and momentum of the N particles in the system. For 

each particle, t , x.- specifies the position of the center 

of mass, is the momentum conjugate to Hi, oÇtl is the set 

of Eulerian angles of orientation of the particle and  ̂

is the momentum conjugate to . we nov consider a repre­

sentative ensemble of the system and define D as the density 

function describing the distribution of the ensemble systems 

in phase space. This distribution function is normalized 

to unity over all phase space and is symmetric in all par­

ticles of a system. Within a differential volume in phase 

space at a given time there are phase points of systems in 

the ensemble. It is a standard result from classical 

mechanics that a volume of phase space does not change in 

size as it evolves in time. (See, for instance, Goldstein 

(36)). Since the number of systems under consideration 
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also does not change, the ensemble distribution function 

does not change along the trajectory of the differential 

volume, i.e. 

 ̂ . il'- A = o (2.1) 
a&i At 

The Hamiltonian of an M particle system is given by 

= | (1̂ ..  ̂ (2.a) 

where m; is the mass of particle i , is the rotational 

kinetic energy contribution to the Hamiltonian of particle 

i and is the interaction potential between particle *-

and particle j . We assume in Equation 2.2 that the forces 

between particles are pair-wise additive. Using Hamilton's 

equations we can write that 

3T -  [  0 . h " " 1  (2.3) 

where the bracketed quantity, called the Poisson bracket, 

is given by 
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The expression in Equation 2.3 is the usual form of the 

Liouville theorem. 

We can define a set of distribution functions for any 

r\ (-'N) particles of the system as follows: 

where clY; = dçi Ax: and the factorials arise from the 

indistinguishability of particles. The quantity defined by 

Equation 2.5 is a function of the positions, orientations 

and momenta of n particles and gives the probability density 

of finding any n particle subset of the total number with 

these coordinates and momenta. If one performs the inte­

grations of Equation 2.5 on both sides of Equation 2.3, 

the result is 

This set of equations is called the BBGKY coupled hierarchy 

of equations. As a practical matter, it is impossible to 

solve for D from Equation 2.3 and to hence find 4̂ .. . 4̂ .,. 

4, from Equation 2.5» Instead, by using approximations 

appropriate to a dilute gas, we derive the Boltzmann 

' nt, 0 (2.5) 

( 2 . 6 )  
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equation, which is a closed equation for , the singlet 

distribution function. 

As 0'Toole and Dahler (3?) point out, the singlet 

distribution function vrtiich appears in the Boltzmann equa­

tion does not include particles which are in the process 

of collision. In order to define vdien a collision is oc­

curring, we construct a geometrical convex surface, , 

about the center of mass of particle I such that it exceeds 

the range of the intermolecular forces. Whenever the center 

of mass of any particle \ crosses , we consider it as 

having entered into collision with î. The singlet distri­

bution function, \ , appropriate to isolated particles 

(i.e., those not in collision) can be written by Equation 

2. ̂ as 

where is zero whenever the center of mass of j lies 

within CÇ; but is unity otherwise. The dependence of 

on the variables of body i is indicated explicitly. The 

integral transform which is applied to 0 in Equation 2.7 

can be applied to the Liouville theorem with the result that 

(2.7) 

+ N S- g,. I 0, t = 
at 

•I 
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(2.8) 

•where =l̂ Ĵ  . Using the fact that the 

particles are indistinguishable and integrating by 

parts, we can write Equation 2.8 as 

X  r  u 1 . C j ^ s j  r  
it 

= (2.9) 

where is the distribution function for pairs of parti­

cles, one of which is isolated as described above. This 

function is given by 

!'*% - 5̂ -̂ 5, C.. D . (2.10) 

The nonzero domains of and V̂ . do not overlap. The 

right hand side of Equation 2.9 is therefore zero and we 

have that 

. L --  ̂ (2.11) 

where 

3c (i^= (AV^ (1 I . (2.12) 



www.manaraa.com

16 

The implication of Equation 2.11 is that the collisional 

rate of change of the singlet distribution function of free 

particles is equal to the difference between the rate that 

pairs of particles involved in isolated binary collisions 

disengage by particle a passing outwardly through and 

the rate that isolated particles engage by particle a. 

passing inwardly through 

The description of the convex surface cî  can be given 

in terms of its supporting function, h (see Appendix A). 

The surface may be scaled by multiplying h by a scaling 

factor,p , vAierever it appears in Appendix A. Specifically, 

the differential surface area of the scaled surface is 

f,* S dk where £ is the ratio of the area on the original 

surface corresponding to a unit solid angle of the surface 

normal The position of the center of mass of body s. 

with respect to the center of mass of body i can be speci­

fied by giving the instantaneous p value for the scaled 

surface on which the center of mass of body 3. lies and k 

at that point. Thus the differential volume, for the 

position vector of a is given by 

^ C2» 13) 

The scaling parameter is unity at the instant that particle 

2 passes through . We can use this fact to write # 
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in the form 

5̂ = '̂ (P-0 (2.1̂ ) 

where \ is the unit step function Tiôiose discontinuity occurs 

at p = 1 . The time derivative of the step function is the 

delta function. Explicitly taking the time derivative of 

1̂15 obtain that 

. (2.15) 

When Equations 2.13 and 2,15 are substituted into Equation 

2.12, we have that 

K \ Sp V 4̂  f 1 1 ) (2.16) 

where <Ai = . In this equation the first equality 

results from the fact that the difference between ̂  and 

can be dropped for dilute gases in which permanently 

bound molecular pairs do not exist to an appreciable extent. 

up to this point, what we have done . has been rigorous. 

Now it is convenient to make the first of three assumptions 

vdiich are based on Bogoliubov's (38) description of the ap­

proach to equilibrium. Briefly this view concerns three 

time scales: the time scale appropriate to a time of the 

duration of a single collision, , ̂ en all of the 4̂  

( M > A ) become functionals of (which does not change on 
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this time scale); the time scale appropriate to a time, 

during which a particle travels between collisions and 

local equilibrium is established; and the time scale ap­

propriate to a time, , during which macroscopic changes 

occur and establish equilibrium. It is then reasonable to 

assume that is independent of events which occur on 

the fc time scale and the length scale. A 

consequence of this assumption is that we can choose an 

arbitrary shape for ; a sphere is most convenient. 

For spheres h is a constant and 

 ̂ . (2.17) 

The differential surface area of the spherical surface, 

, of radius R is K" . We can then rewrite Equa­

tion 2.11 using Equation 2.16 to obtain 

. (2.18) 

For any relative velocity of the centers of mass of 

the two particles, the sphere oî  can be divided into pre-

collision and postcollision regions. When we separate the 

integration over att into these regions. Equation 2.18 



www.manaraa.com

19 

becomes 

K %%1+Qt ,a, -•< 

(^1 .1 , ^ ,& \t V*. ̂  (2.19) 

where Y(x\ = x r̂ cx') and the "pre" and "post" subscripts 

indicate on which hemisphere the variables of i and A. 

are evaluated. By changing the variable of integration 

%. to 'Jk in the precollision term of Equation 2.19, we 

obtain 

[ ( 2̂  i , ̂  1- ) ̂ p̂ost 

- (%1 , 1 , ,2 , til ^ (2.20) 

A o o onitiTX'hn /w% 4 o •f'ViO ' f '  /%n l  T 4  o4  /^mo o?$a n  e r \«  JUAXO Cfc w 61 *111 ̂  ^ w v**».* V WAASi» s** 

lated binary events. This means that corresponding to 

every postcollisional state i •, x.+ fiv.a -, 

there is a unique precollisional (starred) state 

( X*  ̂, X* 4 R Jk*. ̂  from which that postcollisional 

state evolves. We can then replace f ( x,_ i ; x̂ +R̂  -, 

with  ̂( x̂  , ; X* + R 4*, Î* -, t- ) in Equation 2.19. The 
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third assumption is that of molecular chaos; that is, on 

the precollision hemisphere there is no correlation of 

states of colliding molecules. Thus we can factor 

into 4/̂ ") . Upon applica­

tion of all three assumptions on Equation 2.20, we have 

that 

K (aa t "ï ( (̂ '̂ ^  

(. tjN . (2.21) 

Both sides of Equation 2.21 may be multiplied by 

2*1) and integrated over the variables i' and 

i' to yield 

1*3' ̂ 4% 

(ill") 4, (I'M (2.22) 

where the primed states refer to any precollisional state 

and  ̂<• i'- l* V- ̂  ({% - P?  ̂  ̂• 

We can change from a postcollision hemisphere of radius 
•P O 

R to a cylinder whose axis is mounted along . The 

head of the cylinder is mounted at a distance from the 

center of molecule i and is called the postcollision im­

pact plane which is specified by the impact parameter b . 



www.manaraa.com

21 

In terms of the impact plane Equation 2.22 can be rewritten 

as 

Ik' \ s (!'- it ) 

s < V - i* ) (!•>, Ç, 1 (2.23 ) 

where all the variables are evaluated at R" . This is not 

yet the desired form of the Boltzmann equation. In order 

to proceed, we must define and investigate the properties 

of the specific transition rate. 

The specific transition rate, vJp ( i a ft \ i'a' , is 

the rate (per unit concentration of reactant states and 

per unit extension in the phase space of the final states) 

of the binary collision process i in the 

presence of an external field F . The functional form of 

has certain restrictions. The transition rate exhibits 

Galilean invariance and hence can only depend on the vel­

ocity of the center of mass and the pre and postcollision 

relative linear velocities between the two colliding 

particles. Conservation of linear momentum of the center 

of mass in collision requires that Wp be proportional to 

 ̂(G - where G = i  ̂ , Conservation of 

energy requires that be proportional to 

where E is the total energy of the pair. 
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Prom the properties of classical collisions, the ac­

tions of the time reversal operator, T , and the parity 

ft reversal operator, ̂  , on the collision situation lead 

respectively to the following conditions on : 

. Wp ( ̂  i Pi 9 1'Pi'R^ (2.24) 

and 

Wp (i 1 CrVit' RltiiiR") ^ (2.25) 

An additional important property of , proved in Appendix 

B, is that of bilateral normalization 

[  ^  i  \ ( i 2  t  2  ^  \  i '  I '  -

i i f̂ ( %' l' R ; 1 % q ̂  , (2.26) 

In order to get an explicit form for we consider 

a steady state scattering experiment in which one has a 

uniform unit density beam of particles in state 1' col­

liding with a similar beam of particles in state & . It 

is specified that the particles have only the single iso­

lated binary collision. The type i' particles have an 

observational sphere around them and the postcollision im­

pact plane can be designated in the usual way. The ensemble 

density associated with this experiment, z., is the solution 

to the two particle Liouville theorem, 12 ,  ̂ o  ̂ and 
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satisfies the boundary condition Z = ̂  ( i-i'i on 

the precollision impact plane and Z. = i  ̂ 1*) 

on the postcollision impact plane. By the definitions of 

specific transition rate, ensemble density and steady state 

scattering experiment, we can express "Wp as 

>Mp ^ 11 R" \ 1'a'R") = 1"^^" \ 
& 

S ( i'- (2.27) 

•vdiich is recognized as a portion of Equation 2.23. By sub­

stitution of Equation 2.27 into Equation 2.23, we can write 

Equation 2.18 as 

* f LT.Ci") rx.."!" vO .vI I k 
3^ >  -  I  -  J  ~  -  -  -

Wi Ci^ (2^ - <1") (aMl . (2.28) 

The orientations of the particles typically change at 

a rate much faster than . We have assumed that 

is independent of such events. Therefore Equation 2.28 can 

be integrated over ot̂  to obtain 

. r ,H„ 1= \iV \ii' Jl? »l^cU\i ï) 

î.clv (2.29) 
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êre AU , 

t SA*: H.. and 

(ll \ V l'^= 

The expression of Equation 2.29 

Boltzmann equation. 

1%,-

^ (2.30) 

is the desired form of the 
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CHAPTER 3. LINEAR PHENOMENOLOGICAL DESCRIPTION OF THE FLUID 

The form of the Boltzmann equation given in Equation 

2.29 can be generalized easily at this point to cover the 

situation in mixtures. In this case, the right hand side 

of Equation 2.29 becomes an expression for the time rate 

of change along a phase trajectory of where the 

second subscript i refers to the species. On the left 

hand side one must account for the collisional change in 

caused by collisions with all species. Thus the 

Boltzmann equation for a mixture is 

à "t. i 

[ (, ( L (il - f. <i"i It. ij \ JtJ. / 

The left hand side of Equation 3*1 can be rewritten as 

"• jk 

where is the body force per unit mass acting on the 

center of mass of <• species molecules, Wi is the angular 

momentum vector of body 1 and is the torque of the 

applied field ? on the  ̂ species molecules whose orienta­

tion averaged moment at constant U. is . 

The Chapman-Enskog normal solution to the Boltzmann 
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equation derives from consideration of the relative magni­

tudes of the terms in that equation. Using the transformed 

left hand side above, we rearrange Equation 3.I as 

. liu a) . c. . 5 f i. < 'ID. 

i •' 

L (il _ (3.2) 

We now assume that the gradients and the body forces are 

small. By dimensional analysis, Hoffman and Dahler (26) 

show that the terms of the left hand side of Equation 3.2 

are of the same magnitude but they are all much smaller 

than the terms on the right hand side (for possible large 

values of the applied field strength). We define  ̂ as a 

marking parameter to identify the small terms (ultimately 

(- = ̂  ). The standard method is to multiply the left hand 

side of Equation 3*2 by G and to expand the singlet dis­

tribution functions and in terms whose magnitudes can 

also be marked by powers of e as follows: 

cî ̂  t-I V « • (3-3) 

and 
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L. » * e jL ... 
3.t (3.If) 

This done, the expressions in Equation 3.2 yield an equation 

which must be obeyed to all powers of e . 

The equation which is formed by the terms of zero 

power of e is 

O - - ̂  S ̂  4 [̂ 2/ j" «i ï 

- C 'n 1 . (3.5) 

It is generally true that the solution to Equation 3.5 is 

the Maxwell-Boltzmann equilibrium distribution function. 

For a particle of general symmetry, the equilibrium singlet 

distribution function is given by 

f fi'i = n; (a-irfeT") 

txf ( C V ) (3-6) 

where Zr.t is the rotational partition function and where r\. , 

T and w. are arbitrary constants. For the linear and 

spherical top molecules with which we are concerned, this 

distribution function is of the form 
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(linear top) 

(3.7) 

(spherical top) 

(3.8) 

vdiere l-j, is the moment of inertia of the active degrees of 

freedom and for linear tops is the angular momentum 

component along the major axis (the direction) due to 

the electrons. If it is required that the function 

(i) . b%i not contribute to the local equilibrium 

values of number density of species 1 , the temperature 

and streaming velocity, we can identify these quantities 

as n;, T and u , respectively. The higher order terms 

(Â -v) in the expansion of can be written in terms of 

distortions, r. , from equilibrium as rollows: 

. (3-9) 

The above identification of n; , T and u imposes the 

subsidiary conditions on the distortions 
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( /- 3 «7-
O = (il 

/ - LOI I ̂ 
- & \<»! 'i'l < 1 ^  ">;H,-ï1 

= i (U i"' (LI ( lb , Hi"") (3.10) 

where the summations over I extend over all species. We 

require also that the internal angular momentum density of 

each species be zero so that 

[di L, . (3.11) 

The equation formed from the terms first order in e 

in Equation 3*2 is 

- ^ << L ( •* Î . ̂  (^1 

+ I Ĉ .V { ^ V  

_ m _ 111 -r c»l — ti-1 -t 
L  I; <V^ - èj (ï'^l .  (3.12) 

For a linear phenomenological description of the gas, we 

do not need to consider terms of higher than first order 

in  ̂. There is an equation of the same form as Equation 
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3.12 for each species. This set of equations can be com­

pactly given by 

(3.13) 

where 

col toi 

).-L 

. . F" 

S'Ç-i (3.1̂ ) 

& ̂4i'fAâ'[aâ 

vol 
en (V 1 \ V Û' ̂  , (3.15) 

( i: ̂ ar 

C' (i") (H \ri'> i  cv-ï ̂ , (3.16) 
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(3.17) 

- -  s  i l - i )  s - " '  ( i >  

^ ^ y  ï  •  ^  

ni (3.18) 

ti'" \ = i "' (3.19) 

and where Â is a dummy momentum variable of integration. 

Beginning with Equations 3*13-3«19 we adopt the convention 

that a subscript to the right of an expression in paren­

theses refers to a component of a tensor defined over com­

position space#... Composition space has the same dimension 

as the number of species. For instance the component 

of the second rank composition tensor I is 

that component for vniich molecule 1 is species L and 

molecule -2. is species  ̂. Tensors in the function space 

of the coordinates of the molecules are written in the usual 

way with an underscore for each rank. The Einstein summa­

tion convention is assumed for indices in composition 

space. The sums over -» in Equations 3*15 and 3*16 extend 

over the number of species . In this form of Equation 
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3.13, we can see that it is a linear integral equation of 

the second kind to which the Fredholm theorems (39) can be 

applied. 

The first step in the application of these theorems 

form of Equation 3•13» Likely candidates for such solu­

tions based on the form of the terms of Equation 3*13 de­

fined in Equations 3»15; 3*16 and 3*17 are the collisional 

invariants of mass of each species, linear momentum and 

energy. The collisional invariants, in addition to causing 

the terms defined in Equations 3'15, 3*16 and 3*17 to sum to 

zero, give a zero result for the field term of Equation 3*18 

and hence are indeed solutions to the homogeneous form of 

Equation 3*13' In terms of vectors in composition space 

the solutions, ( X , are 

is to determine the solutions, ( , of the homogeneous 

The Fredholm theorems which apply are determined by the fact 

that these solutions to the homogeneous equation are nonzero. 

The next step in the application of the appropriate 
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theorems is to find the solutions to the "transposed" 

homogeneous equations given by 

O. 4 \ i i  ( K ' " ( | , Û  
i * 

4- K'"(i,ïV i">\ . (3-20) 

The quotation marks around the word "transposed" mean that 

we interchange the roles of ï and  ̂in Equations 3*16, 

3.17 and 3*18 rather than perform the usual transposition 

of the indices of a tensor. Using the conservation of 

mass, of linear momentum and of kinetic energy, bilateral 

normalization and the definition of an adjoint of a linear 

operator (designated by a dagger superscript), we can write 

Equation 3.20 as 

- (3.21) 

where 

c k ' - ' I  

 ̂  ̂ , (3.22) 
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^F^l'i \il^(S^î-4V-5(l'-f^') (3o23) 

and 

(*='"'(1,̂ )̂ ' -L . (3-2'̂ ) 
3l=i, 

One can readily verify that the solutions of the "trans­

posed" homogeneous equations are also ( . The 

Predholm theorems then state that the necessary and suf­

ficient conditions under which Equation 3*13 possesses a 

solution are that 

C3-25) 

for all . The final information that the theorems give 

is that any solution to the inhomogeneous equation could 

possibly include an additive combination of the solutions 

to the homogeneous equation. The subsidiary conditions of 

Equations 3*10 prevent a nonzero combination of the 

from being included in the solution to the inhomogeneous 

equation because Equations 3-10 are statements of orthog-

anality batween I and for all values 

of V . 
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When the general expression of Equation 3.6 for 

is substituted into Equation 3*13, the inhomogeneity be­

comes 

( ̂ <1 f I n/ ( -̂   ̂ T 

 ̂- F' i C. 1 (3.26) 

with and Ĉ = -ô -u. and where is the 
rot 

average local equilibrium value of H - . When this form 

of the inhomogeneity is inserted into the solubility con­

ditions of Equation 3'25, the fluid dynamic equations to 

lowest order in € are obtained. Thus we find that 

r?' = -̂ 1' & , (3.27) 

 ̂= -s&' f + i. fi , 
"• P 

(3.28) 

and 

 ̂= - y. T - (f (3.29) 
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with J p - i .  n JkT 5 C,r = 2 vxS,T  ̂C; 

and n- t. <\, and vrtiere c is the contribution of the ro-
L 

tational degrees of freedom to the heat capacity per 

molecule of species i . Using Equations 3-27, 3*28 and 

3.29 to evaluate the time derivatives vAiich appeŝ ®in 

Equation 3«26, we have the result that 

( b ii\\= cî  \ +1̂ ].'" t - i 

-  ̂ t ( a - 4'"̂  

i aj C'-I- sr* V (3.30) 

with Vi.̂ = C'̂ Vâ îT̂ '" Cl , = vÇ* / JkT , 
_ •*• 
H[° = /-«%T and is the second rank unit tensor 

over a b dimensional space and lAere the generalized dif­

fusion forces, ài , are defined by 

V. n. 
-

^ ( 
P-P  

9  F "  
t ^ (3.31) 

They satisfy the condition of linear dependence that 

^  Ai  -  o  
i - • 

The operators on the right hand side of Equation 
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3.13 are all linear and by Equation 3*30 the left hand 

side of that equation is seen to be linearly dependent upon 

the generalized forces 4c , and vdiere the 

double bar over the last force indicates the symmetric 

part of the tensor. The function, ( §\ , appearing 

on the right hand side of Equation 3.13 can thus also be 

written as a linear combination of these forces. That is 

^ r" ( n -7^ e^T - \ k \  • 

^ I • (3.32) 

It is now convenient to divide (.§ \ as follows: 

iBV (3.33) 

where the super naught indicates a traceless tensor. With 

this division, Equation 3.32 becomes 

-(atTY^ 7^ JL,-

- to^; ^ *4^ (3.340 

where $= . The linear dependence of the d & 

causes an arbitrariness in the definition of the 
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which we remove by requiring that 1 CÇ = o for all i- . 

The substitution of both the expression for the first 

order distortion of Equation 3*3̂  and the expression for 

the inhomogeneity of Equation 300 into Equation 3*12 

yields an equation which is linear in the generalized 

forces. These forces are independent except for the afore­

mentioned linear dependence of the , which we remove by 

changing from to the independent forces 

 ̂ , -J + ̂  , where < is arbitrary. Then 

separate equations can be formed by equating coefficients 

of the forces as follows: 

(ÂV,, u\ 

( s (i ). (Â\, icn. (3.35) 

with 

( 0 \  =  m£ -wrM, 3̂.36) 

< i Lvy.V" , (3.37) 

( t «r* 

- fir* -1 :i. i 5 ^ (3.38) 
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(6'-" ^ = C'^ (-S;, (3.39) 

and 

( Â ^ =  n -  C  0 \ .  A -  > A , n - ^  c  

and where 

(3.̂ 0) 

h: (ê\- (3Al) 

and 

( P'lij " t ^dlî 

(K'" (î,n » (3.42) 

The symbol [ X]''̂  signifies the highest weight irreducible 

part of the polyad formed from p X «s. 

The first order distortion in terms of independent 

forces can be inserted into Equations 3*10 and 3*11 with 

the result that 

S à i  U ' ; '  =  o  ( 3 . ^ 3 )  

where can be ( 4\ ? , Cp). or ( . 

and (4'*'̂  includes all the ( and in addition 
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In general the flux of any property can be written 

as an integral over all momentum space of a particle, whose 

integrand is the product of the distribution function, the 

relative velocity,C, and the property under consideration. 

In our situation we can write the fluxes of mass, linear 

momentum and kinetic energy respectively as 

(j\ = \di (11^ i (I') , (3*^) 

£ = - f  'h 4'̂ "̂  (3«̂ ?) 

and 

â = ( J\ ( fi'V - Q' (3.46) 

where 

r = y. y, , (3.47) 

(3.48) 
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9'= Wi (Ç. » h;" 

- - nr (3.49) 

and 

l %*''' -  ̂ (3.̂ 0) 

The flux of kinetic energy given by Equation 3.46 is di­

vided into a convective term ( J\ and a conductive 

term Q' . The integrands of Equations 3.V+, 3.47, 3.4-8 

and 3*4-9 can be related to the expressions for the in-

homogeneities given in Equations 3»36-3*39* By Equation 

3.35 we have that 

y  -  \ d i  (  = - f e i l u  

(3.51) 

and 
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= IT 

where the double brackets signify for two tensors a and % 

il4 ( 'î\ , •) 

= UiCîV. . (3.52) 

By substituting the expression for of Equation 3.3̂ , 

we derive the general force flux relationships as follows: 

= + 5 : id 

+ 7 - n ̂  1» 11 S \ Ç' H 

1= -%T I  ( ' f f  - tU . IU  •.  5  •.  U |  

« Uo.aU - 1 ̂  1 , 
t 

Tf = ( I • \t A , + I •• I 

i- V. u 0,D ^ ̂  • U 0 1 
4<  ̂

i ' > 

(3.53) 
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and 

û'» -*T UMA- l"' 1. I ' I u| .̂ U 

* ?. « It o,&H - " 1%- IIS''', A(i 

The operation of parity reversal on the fluxes, 

which are all polar quantities, has the result that 

P (Jli — (î\ P U = 1 

P Q' -- - Q' P  ̂= -u . (3.51») 

Since the parity of the forces in Equations 3-53 is readily 

apparent, these equations can be used to determine the 

parity of the bracketed expressions therein. The bracketed 

expressions are unaffected by rotations perpendicular to 

the direction,, of the applied field, ? , and can there­

fore be expanded in the appropriate tensors given in Refer­

ence 27. These tensors in the expansion must all have the 

same parity as the bracket in order to have nonzero coef­

ficients. The parity of such tensors can be determined 

from the facts that a magnetic field is unaffected by parity 

and an electric field reverses direction under parity. It 

is useful to note the additional property of the double 

bracketed expressions that = o if a and b are of 
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different parity. The proof of this statement follows 

easily if P and can be shown to commute. That 

these two operators commute can be established by examin­

ing the effect of P on the separate parts of ( in 

Equation 3.̂ 0: ( is unaffected by parity reversal 

because the energy of the dipole is unaffected as 

is L, an axial vector. The operator Cis invariant 

to parity reversal by Equation 2.26. The sequence of the 

proof that = o if a and are of different 

parity with eigenvalues and under parity is 

( i i \ . ' < I p 

' K  tUY ̂ ? (Â\j ( 

(bl.) (3.?6) 

where the self-adjointness of P is utilized. 

Time reversal also leads to a useful property of the 

double brackets. Proof of this property requires that we 

first show that 

T (k-),. - (11,, T , (3.57) 

The time reversal operator can be broken up into a product 

of an operator on the applied field and of an operator on 
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the momentum, T - . With the aid of Equation 2.25 

and the conservation of linear momentum and of energy, we 

can operate on the individual terms of ( given in 

Equation 3*̂ 0 with T and show Equation 3*57. As an example 

we give the proof sequence for (1 

'  ̂ Î r V 5 

w, ̂ ( T„i Î \ VÏ") C' C T 

= - 1 it.iî.iiLV Vl") 

C'ti^ C ^ (tl'-tni 

 ̂ i \A i '  Çai tï'î' in") 

i L - •a.-s -

The theorem which we wish to prove is that for any tensors 

C G >c and ( I 
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(3.58) 

where and \ are the time operator eigenvalues of 

respectively and the super­

script T refers to the bulk transposition of function 

space indices. The steps of the proof of Equation 3*58 

utilize the self-adjointness of T„ and are 

Uî.feU' ,T: ̂  

- ((4\. a\. rj, (t 

= r̂ Tf ( (1*1 ji Vv- ,(t\v b , % if . 

The tisie reversal eigenvalues cf (â \̂  niay be found 

through Equations 3-35 by considering the equivalent prob­

lem of how the time reversal operator affects the ( . 

By this means we find that 

T (A\ . - l k \  ^  

T i \ \  -  ( . k \  (% \  ,  

T {X \ = (X\ (0\ (3-59) 

and 
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f (c'"\ = - icn, . 

We now examine the double brackets of Equations 3«53 

in a two-fold process. The first step, as we have already-

mentioned, is to establish \rtiich tensors of Reference 27 

have the appropriate parity for the expansion of a given 

double bracket. The second step is to apply the theorem 

of Equation 3.58 to derive the Onsager-Casimer relation­

ships. The application of this process results in the 

following statements: 

(i) The second rank tensors , 

llÇ \ A H , and U 4 can be ex­

panded linearly in the three tensors (27) with coef­

ficients L;_ - Land respectively. The coefficients 

and L„ are nonzero for any applied field. For the 

case ? ' tl (magnetic field case), is nonzero and is 

an odd function of h ; for 1? = t (electric field case) 

is zero. The relations between these double brackets are 

(ii) The vectors , UD,g"M\ 

and G' \ are proportional to In a magnetic 

field the coefficients of proportionality are zero and in 

an electric field they are nonzero. The relationships be­

tween these double brackets are and 

i t  D i t  .  
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(ill) The third rank tensors (I & , % , U i , 

I I] and U I , can be expanded in the 

three tensors (27) which are traceless and symmetric 

on their last two indices. All scalar coefficients of these 

tensors are zero in a magnetic field. In an electric field 

f'" and Fhave nonzero coefficients. The relationships 

between these double brackets are 6, % - -  i l  \  ,  

and I =-UÎ U 

(iv) The second rank tensors l{. o,% \] and II % ,01% 

are proportional with nonzero coefficient to the traceless 

and symmetric tensor (27) j . The relationship between 

these tensors is U b 
g â 

(v) The fourth rank tensor Hi can be linearly 

expanded in terms of the five fourth rank tensors 6 ca'i , 

11 J ît 5 and which are defined in 

Reference ̂ 0. These tensors possess the required symmetry 

and tracelessness and in addition they have the orthogonal­

ity properties mentioned in that reference. All five tensors 

contribute in a magnetic field and all but and ft 

in an electric field. 

At this point we are ready to identify the transport 

properties from the force flux relations of Equation 3*53 

and to form and solve the kinetic equations. The two dis­

tinct experimental situations of concern in this work are 

(i) the effect of a magnetic field on the viscosity and 
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thermal conductivity of a gas composed of spherical top 

molecules and (ii) the thermal conductivity, thermal dif­

fusion and diffusion occurring in binary isotopic gas mix­

tures composed of linear molecules. We treat these two 

situations in the following subsections. 

Solution of the Kinetic Equations for Viscosity and 
Thermal Conductivity of a Pure Gas Composed of Spherical 

Top Molecules in the Presence of a Magnetic Field 

From Equations 3*̂ 5 and 3'53, the total pressure tensor 

for this situation is given by 

g = - &T S ; tt& G - -fe-V \] 

-^T S •• \{\ , V- U 1(0,(3.60) 

where we have omitted terms which do not contribute in the 

case of a pure gas in the presence of a magnetic field. 

For a pure gas there is only one component and we can drop 

the composition space indices. The identification of 

viscosity requires the following manipulation: 

S = it = %. f % = S : (| 

= t : (.A: t % , & ̂ = b : ( -TJI %  ̂

= \\ I . I U • 1 (3.61) 
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where we have used Equation 3*57 and part of Equation 3»59» 

The standard macroscopic formula for the pressure tensor 

(21) is 

s ' Î î  % - K % C" , L'l'I , S 1'" 

* w':;: <3.62) 

where \ is the shear viscosity, x is the bulk viscosity, 

and and are the coefficients of coupling 

between the bulk and shear forces. Since shear viscosity 

is the only property to be studied, we need only identify 

it (though the other identifications are apparent). Using 

Equations 3-60-3-62 we find that 

1 U| , I . (3-63) 

According to the method originated by Kagan and 

Maksimov (4l), the tensor 1 is expanded in the infinite 

I a J"' (-n 

B"'' (3.6k) 

where for spherical tops cix; tTY  ̂
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indicates nested indicial collapse (42) of the func­

tion space indices, Ŝ  is a Sonine polynomial (̂ 2) of 

the function X and the tensor coefficients 6̂ ^̂  of 

rank are independent of microscopic variables. 

The expansion of Equation 3*6̂  can be inserted into 

11 1 U and after some rearrangement we obtain 

a i  . h  -

= loT 

where we have used Equations 3*35, 3*37 and 3.61 in these 

steps. Since the integral of Equation 3*65 is already 

partly in terms of and fl ̂ , we change variables of 

integration with the result that 

u I /s V e"' 

lû.v'̂ s::: 0.66) 
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The singly bracketed integral in Equation 3.66 is 

field independent and hence must be isotropic. From group 

theory (43), one knows that the only way for such an 

integral to be nonzero is for the direct product of the 

tensors in the integrand to be a basis for a representa­

tion which contains the totally symmetric irreducible 

representation. The direct product of two tensors of 

weights and (for instance j 

where the first tensor is of weight 1 and the second ten­

sor is of weight p ) is a basis for a representation which 

is the Kroneker product of the two original representations. 

The product representation can be decomposed into irre­

ducible representations of weights 

In order for the reducible product representation to con­

tain the totally symmetric irreducible representation (of 

weight zero), must be equal to . 

These group theoretical considerations require that 

for the singly bracketed integral of Equation 3*66 to be 

nonzero, p must equal two and must equal zero. Thus 

Equation 3.66 becomes 

«l.i\ \ - %  I; 

sf 1°'" r" . (3.67) 

/ 
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The orthogonality properties of Sonine polynomials can be 

used in Equation 3-67 because the powers of and 

which occur there can be written in terms of Sonine poly­

nomials. The result is that the only nonzero terms in the 

summations over s and t are those for which s = t = o 

Equation 3.67 can thus be written as 

UO. ®' r°° . (3.68) 

This singly bracketed tensor integral is proportional to 

the isotropic fourth rank tensor 4 which is traceless and 

symmetric on its first tifo and its last two indices and 

is given by (̂ 0) 

a= B* ci") V (3*69) =  2  *  - i  -A  # 

Performing the standard procedures of tensor algebra, we 

obtain 

ul.liî- n (3.70) 

and thus from Equation 3*63 we have that 

% = -J?. B'""" (3.71) 
= % "= • 
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We solve for by using that part of Equation 

3.35 generated by terms linear in | , i.e. 

i !:">n 1 R?" e'" r" (3.72) 

where 

L«a'" La.i"'CNK-, 5;:; (an (3.73) 

and where we employ the expansion of Equation 3*63* We 

now take integral moments of Equation 3.72 with the entire 

set of ' • The result is the moments equations 

which are of the form 

( I 
tsi L'̂ j. -i = £ 

1 ^ 5 (3.74) 

The reason that the time reversal operator is brought in 

here is that Ji becomes effectively self-adjoint. The 

proof of this is similar to that of Equations 3»61 and is 

(•T if'''''', A C""! = ê?" ̂  

. (T6. 
PI'St 

y (3.7?) 
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It is obviously impractical to include an infinite 

number of terms in the expansion of | and to create an 

infinite number of moments equations. The primary factor 

in deciding whether a tensor corresponding to a certain 

P%st should be included in the expansion set is to de­

termine its contribution to . If ( t 

" , then the equations for the and a-ooo coef­

ficients do not directly couple and that can be as­

sumed to give a small contribution to looo . The pos-

sible reasons for which ( T ̂  , v\_ g ) would be zero 

are either that there is no isotropic tensor of the form 

of the moment or that and are of different 

parity. A linear dependence between the % , originat­

ing from the subsidiary conditions of Equation 3«̂ 3; can 

also result in the elimination of various from the 

expansion. (Hie result of these considerations as applied 

to Equation 3*7̂  leaves in the series 

and higher terms of even parity. We truncate our series 

at and . Cooper and Hoffman (44) demonstrate 

that the magnetic field viscosity contribution of higher 

rank tensors and higher order polynomials is small. Thus 

our truncation is justified. 

For this truncation the moments equations of Equation 

3.7̂  are explicitly given by 
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a'°°° 

^•(V1°V. IAIO^V B*"° 

(oJo. . i C'ï^ V!°V!^ V- (oIû>,Â.\ii,°vj^yS"°° 

' (ûj n, ,AaIû,V' f " °  (3.76) 

where we use the fact that = a°a . The tensor 

integrals on the left hand side of Equations 3.76 can be 

performed to yield 

0= "Nat O,, p < 1"°°. n" ( a°0,, P Q.a.i®" 

ta:o,,êa:a.1^' (3.77) 

where Â is expanded by Equations 3*̂ 0 and ê terms which 

are zero are omitted. 

The tensor coefficients and 8°̂ "° are fourth 

rank tensors which are traceless and symmetric on their 

first two and last two indices. In a field free situation 

these tensors are proportional to 4 and in the presence 

of a magnetic field they can be expanded linearly in terms 
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of B] , 6 and §̂ {3̂  . In or­

der to determine the value of the shear viscosity in the 

field free and field situations simultaneously, we expand 

Ba-ooo -03^0 _ _ _ 
and S as follows: 

° = Wo I - bi,  ̂

8**̂ ° =  ̂  ̂ 6% Ci") 

+ ̂ 3m 6̂  Cil . (3-78) 

In Equation 3»77 all of the integrals containing p are 

proportional to 4 . The integral containing ê can be 

written as 

0 (a°a,, ê 

O-IOi L_ nTci . (3'79) 

The average magnetic dipole moment,, has the property 

that 
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vtiere  ̂ is the gyromagnetic ratio. When we substitute 

this expression for into Equation 3*79 and perform 

the differentiation therein, we find that 

where for any three vectors a , b and c 

a X ^ b ç  =  a y b ç f b  %  \ ç  .  (3 * 8 i  

The single bracketed integral in Equation 3.8I is also 

proportional to 4 • By the usual methods of tensor alge­

bra, we find from these considerations that Equations 3*"" 

can be written as linear equations containing independent 

tensors. Coefficients of like tensors in Equations 3*7? 

can then be equated to form linear scalar equations. We 

must then calculate the coefficients in these equations 

which are scalar integrals containing p (called collision 

integrals) and solve these equations in the usual maimer 

for the unknown b-^ . 

The can be related to the coefficients in the 

scheme of deGroot and Mazur (̂ 5) in which appear \ , 

Il Il , I3 , Is and 1/ . These relations are 

n ( . © a 

e. (3.81) 
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1°" ^10 /a. 

\= 1*10 ̂  nt\ /i i; - b,, 1 ^  

^ Is = . (3.83) 

Equations 3.83 are derived by identifying the components 

of 1 of Reference ̂ 5 with the components of . 

The steps which lead to the expressions for the mag­

netic field thermal conductivity in terms of collision 

integrals are parallel to those for viscosity. The macro­

scopic equation for the conductive kinetic energy flux, 

, Is 

Q' = ' ̂ T (3*8̂ ) 

where h is the thermal conductivity tensor. The macro­

scopic expression of Equation 3°84 can be compared to the 

appropriate microscopic expression of Equation 3*53 for 

the case of a pure substance in a magnetic field. The 

result of this comparison is that we can write that 

\ ̂  3. t'T U A . . 
(3.85) 

The vector A can be expanded in the Kagan-Maksimov (4l) 

series as follows: 
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(3.86) 

where the are independent of the microscopic vari­

ables. The expansion of Equation 3.86 can be introduced 

into the expression for and with the aid of 

Equations 3*35 and 3*36 we find that 

(aw. 
P1,st 

wj" LOT' s;r, 

s;:. K") 4''" . (3.87) 

Group theory and orthogonality of Sonins polynomials elim­

inate all but and from the series in Equa­

tion 3.87. When the remaining tensor integrals of Equa­

tion 3.87 are evaluated, the result is that 

-V%. , _ a 
il ^4r- ^ J . (3.88) 

We can now substitute the series of Equation 3*86 into 

the appropriate member of Equations 3*35* Then, as before, 

we take integral moments with the resulting equation. In 

considering which past couple with and 

, we observe that parity requires that such p 
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be odd. The possibility of including itself is elim­

inated by the fact that 6̂ °̂ °= o by virtue of the linear 

momentum contribution to the subsidiary conditions of 

Equation 3A3. The next two terms of the series in order 

of complexity are and Viij, . For spherical 

tops all the moment equations' coefficients which would 

couple to vOj. S,"* and are 

zero. Therefore we take as the third term and 

truncate the series there. 

The function A then takes the form 

A= t,- A'"° - r°° (3-89) 

with 

f, = W, (^- ") (3-90) 

and 

These  ̂of Equation 3*89 can be expanded in 4'̂  ̂

and A for field off contributions and the appropriate 

tensors of Reference 27 for field on contributions as 
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follows : 

6'"° = S'" V 1,̂  J-' , 

A"" . r\ 1̂  V r (3.91) 

and 

A 3- T ̂ 
§ ' **l * 5i Si i . 

The expansions of Equations 3*91 can be substituted into 

the moments equations to give 

_ —A. « a ** * 
- S = 1^4,, p til ̂ *1. 4 l+rf n-

a j . ( T  t ,  p  ^  

_3 W 4, jl 4/) 4'̂ 2} 

^  f v S l 1  '  ^  

cT*;,p(^y 
* "  f .  1  — -  '  

4 ") ^ ^3 , © ^3 ( "^ t-5 . ̂  ). (3*92) 



www.manaraa.com

63 

The third moment equation of Equations 3*92 is formed with 

T instead of \ <̂ 3 for calculational convenience in 

constructing the isotropic tensors in which the resulting 

tensor integrals are to be expanded. In Equations 3*92 the 

single tensor integral containing ê can be written as 

n (T , ê  ̂

The sixth rank tensor integrals of Equations 3.92 and 3.93 

are isotropic and can be expanded linearly in terms of 

and IJ  ̂ given in Appendix C. The Equations 

3.92 can now be reduced to scalar linear equations in the 

unknown whose coefficients contain collision inte­

grals. 

The can be related to the field changes in the 

thermal conductivity measured in References 10 and 11. 

Using Equations 3«S? and 3*08, we can write that 

 ̂ + (3*9̂ ) 



www.manaraa.com

6h 

where A, is the field free thermal conductivity and , 

6 and are respectively the changes in parallel, 

perpendicular and transverse to the magnetic field. 

Solution of the Kinetic Equations for Thermal 
Conductivity, Diffusion and Thermal Diffusion 
in a Field Free Binary Isotopic Gas Mixture of 

Linear Molecules 

In a field free gas mixture the macroscopic equations 

for the mass flux and conductive kinetic energy flux are 

(46) 

(J\ =-CD'), îil (3-95) 

Q'= -x'v, T - f  CO'V, (3.96) 

where 0̂  ̂ is the binary diffusion coefficient, is the 

thermal diffusion coefficient of species <• and ?•' is the 

thermal conductivity of the mixture. As was previously 

mentioned, the are linearly dependent. We can identify 

D- through comparison of Equations 3*53 and 3*95. The dif­

fusion coefficient is defined so that = o and therefore 

the implied summation over  ̂ in Equation 3-95 is effectively 

over species (i.e., i ) and thus the linear de­

pendence is removed. We now write the diffusional contri­

bution to J; of Equation 3»53 also over all species 
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as follows: 

3 .  =  ( y V '  •  U  a  ,  -  n  à i  •  ^ 7 ,  H s  ' ,  s  

-«C/"C'"U^ - (3.97) 

The identification of is then apparent. In particular, 

for the case of binary mixtures 

J,' [{(j'", C"M1 . (3.98) 

The appropriate form of the microscopic equation for the 

conductive kinetic energy flux is 

Q'= - teT L \"fV" v̂ T • 11 ̂ , 6 n -

Ad, ((S"\ AH ] . (3.99) 

The second rank double bracketed tensors of Equations 3*98 

and 5.99 are all proportional to | . The scalar cc3f= 

ficients of the macroscopic flux equations (Equations 3.95 

and 3-96) can then be identified as 

D: = , (3.100) 
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• -
UG" G"' 

(3.101) 

and 

x'-^4i\u -. . (3.102) 

The functions and Q I can be expanded in the 

Kagan-Maksimov (4l) series 

6- z,,  ̂c (an 

® '' (3.103) 

s\" = i.. I a J''' s% (-r' ( r/ \ 

(3.10k) 
( ^ P n  Ç  n -

When the expansions for and G Y are substituted into 

Equations 3̂ 100-3̂ 102 and the considerations of group 

theory, Sonine polynomial orthogonality and subsidiary 

conditions of Equations 3*̂ 3 are made, we find that 

D; -- VV A'"" S'" (3.105) 
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(3.106) 

and 

v = ̂  L -&r'' ̂ 
3 i-

_ I r 
® i  .  (3 .107)  

In order to form the moments equations, we truncate 

the expansions of Equations 3.103 and 3.10̂  so that they 

include only ( i and . 

We justify this truncation by the fact that analogous work 

on spherical particles (46) indicates that for calculating 

isotopic thermal diffusion, which is of primary interest 

to us, higher order terms are not necessary. For the field 

free condition all of the and 'S - are pro­

portional to an isotropic tensor ( or & ) and as a 

result we can rewrite the truncated expansions of Equations 

3.103 and 3.104 as 

à .  -  i t'î s. 
(3-108)  
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G T ' i «.109) 

where 4̂ =  ̂  ̂ , <̂ '̂ = \M̂ (i-a\̂  

and 4)J = - o-I . The moments equations in these terms 

are 

(4^, , (3-110) 

(4% ,  "  " i" .  I  *1  ,  ( fA, ,  ,  (3 .111)  

C$:  ,  CP-) ; ,  î ,  (3 .112)  

fiTtri 

n^nj (3.113) 

where is or i  V  ] •  when is 

respectively or ^ . The integrals which appear 

on the right hand side of Equations 3'110-3 «113 are the same 

for either A.^ or S'V terms because both are expanded in 

the same set. For the case that \ is ( , the 

left hand sides of Equations 3*110 and 3*113 are zero and 

( $ : ,  4 " '  ( 3 . 1 1 4 )  
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(4:. - r (3.115) 

For the case that (C' \ is 1%'' Y, , the right hand 

sides of Equations 3*111-3*113 are zero and 

(3*116) 

These moments equations contain second rank tensors all of 

the tensors in the moments equations, we can form scalar 

equations which can easily be solved. In terms of the 

scalar unknowns -«.j and x,' , Equations 3*105-3*107 are 

given by 

which are proportional to % From the coefficients of 

a IV»^ ' ^ f\ /'v 
(3.118) 

and 

A' = VT t y\̂ rv\[''" 1  ̂  ̂
(3*119) 

Thus we have derived the kinetic equations for the 

cases of interest. These equations contain the notorious 
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collision integrals. The next chapter will be devoted 

to the evaluation of these integrals for nonspherical 

molecular models. 
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CHAPTER h, EVALUATION OF COLLISION INTEGRALS FOR 

NONSPHERICAL MOLECULAR MODELS 

The collision integral coefficients in the moments 

equations (Equations 3*78, 3*92 and 3*110-3.113) are ten­

sors which can be written as a linear combination of a basis 

set of isotropic tensors with scalar integral coefficients. 

A scalar collision integral between a function 4̂  of ten­

sor rank u and of tensor rank is of the form 

where 4 is some isotropic tensor of rank û v- . We can 

make the division of terms such that 

W I' ) 

(4.1) 

S ̂  Pii = #***" I L4L ,1 llTi 

» 14;, ̂ 1"; 1 (4.2) 

where 
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4o"- [ = 4 f'""' V v  

C'i' 
"i 

Î ci^ { ̂  1 . (4.3) 

From this point, we refer only expressions of the form of 

Equation M-.3 as collision integrals. 

From the Kagan-Maksimov expansions (Equations 3-66, 

3.87, 3.103 and 3.10̂ ), the functions and can be 

taken to be polyads in w and a , the reduced linear 

momentum and reduced angular momentum respectively. These 

momenta of colliding molecules are conveniently taken to 

be the components of a generalized 12-D momentum vector 

J where the curved underscore sig­

nifies a vector in the 12-D space as opposed to a straight 

underscore for a vector in the 3-D space. When -writiî  a 

tensor £ in this space in component form, we write 

. The Greek indices run from one to four, in­

dicating whether we are in the g» , o-i , or sub-

space, and the Latin indices run from one to three. We 

define the following projection operators: 
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i h .  

which are second rank tensors in the 12-D space. For any 

-j from one to four, = -Q-1. , , ̂ 3= 

and ) are such that we can define a quantity 

 ̂ • The operations O3 

and 0.1 in the 12-D space of concern here are defined by 

tr cs . _2- II1.1 

and 

where X is a second rank tensor in the 3-D space. These 
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operations can be carried out more than once within a 

single expression. In the case of we imply-

that the operations are carried out times according to 

the nested convention of indicial collapse of Chapman and 

Cowling (42). 

The polyad t. can be written as 

— XDv. . 

Likewise a 12-D analogue of this polyad, , is given 

by 

4- = !•.•••• t ( 'nv. (IV 

-3. # w 

As a consequence of these definitions, we have that 

The identification of Equation 4.5 can be used to rewrite 

Equation 4.3 as 
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 ̂ c"'' (. ") (̂ .6) 

where x =  i  if -h= i and  ̂ if Jk--i . Thus, without 

loss of generality, we can restrict our attention to a 

tensor integral of the form 

S a vip (. %). W) 

(4..?) 

The collisions do not depend on the momentum of the 

center of mass of the two particles and it is therefore 

advantageous to transform the 12-D momentum to a frame 

such that >0-̂ , p ,  ̂ where [i , the reduced 

linear momentum of the center of mass, and 1 , the reduced 

relative linear momentum of the colliding particles, are 

defined respectively by 

; = ' s'" 

and 

Ï = 4- vOj (4.8) 

w i t h  :  ( . a n d  / < .  e q u a l  t o  t h e  r e d u c e d  m a s s .  

The superscript com refers to the center of mass co­

ordinates. The unitary transformation, S , which transforms 
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the generalized momentum from (O-i. to 

(Ot. O., (3 .t is given by 

S = Q 

% 
0 

(i-) 
q 

r' 

0 

o 

Q 
11) 

0 
111 c rs 

*0 i 
(4 

Any projection operator can be converted to and from 

center of mass frame using S as follows: 

â®- Sm: 5 
-1 

S _ = s" pr % ~ M 
i h .  

As an illustration of Equation 4̂ 9a, we note tha 

P 
% VI, 

g p 

-

I'" / 
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Co 
Q 

Q 

0 

O 

Q 

g 

g 

s 

q 

o 

Û \ 
(̂1) (̂31 

r\ n 
& ' £-. . (4.10) 

Because of the collisional invariance of ti , it is con­

venient in the evaluation of Equation ̂ .7 to work in the 

center of mass frame; but, in the actual process of per­

forming projections on the tensor resulting from the inte­

grations in that equation, it is easier to stay in the 

laboratory frame because of the simple form of the pro­

jection operators. 

Let 73̂  be the precollision momentum vector corres­

ponding to the postcollision momentum % on a given tra­

jectory in a binary collision. We can define an apse 

vector  ̂ for the collision in the 12-D space by the rela­

tion 

k = ( 'I /t  ̂ (̂ .11) 

gp - ?r 

As a trivial consequence of this definition and the fact 
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that total kinetic energy is conserved in collision (i.e. 

), we have that 

-yj, . i< o  ̂ (4̂ 12) 

= -It-a (4.13) 

and 

% - ( ^ =11*- a . (4.14) 

Thus the net effect of the collision is to change the sign 

of the component of the momentum along the apse vector 

while leaving the other momentum components unchanged. 

It is then natural to think of k as a unit vector along 

•t-V.o ii-wooT na 7:0" . 

The components of  ̂ in the center of mass frame are 

given by 

h"= ̂   ̂o (4.15) 

where and are defined by this equation, 

D ̂ li. V V and the invariance of the center of 

mass momentum component is reflected in the fact that 

Ep . In the laboratory frame, k 

is given by 

S ' 0" C-ai.-ti,- (4.16) 
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For spherical potentials there are no collisionally active 

rotational degrees of freedom and hence 

Since the component of the generalized momentum along 

the apse vector changes sign upon collision, it follows 

that for an odd number of times during the collision the 

generalized momentum is orthogonal to the apse vector. 

The temporally central point of perpendicularity we term 

the apse point. 

The specific transition rate 1%̂ '! from the 

to the % states can be expressed in the form 

where the integral restriction assures that 

is a postcollisional momentum. This equation defines 

I which we call the generalized cross section 

and whose explicit functional form depends on the nature 

of the interaction potential. Since % is a unit vector 

in the 12-D space of % , it is specified by 11 generalized 

Eulerian angles. However, since  ̂S , < has a 

nontrivial dependence of only eight generalized Eulerian 

angles which fix it in the + P, subspace. 

Substituting Equation 4.17 into Equation 4.7 yields 
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where 

(î̂ f U'>a\''- tïî r) . (4.19) 

Further evaluation of requires specific knowledge 

of the generalized cross section, ,%") . 

The form of «y is known for the limiting cases of 

rigid ovaloids and central soft potentials. For rigid 

ovaloids it is known that (26) 

>• j.. Qr,r, = 0 1 —̂  5 (4.20) 

i - ' - L . \ 
where 1 Tg " | is the Jacobian of transforma­

tion from the coordinates to < . Here S is 

the surface area per unit solid angle of K on the volume 

excluded to the center of mass of molecule 3. by the 

presence of molecule i at fixed and . The unit 

vector K. is the normal to the excluded volume surface at 

the position of the center of mass of molecule z during 

the instant of contact. The factor ( i- and 

being the number of collisionally active rotational degrees 

of freedom of molecules i and a. respectively) is unity 

for r] and equal to zero or three and is a product of 
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delta functions otherwise. For instance, for a collision 

between rigid ellipsoids ••• 3 and ' 

i ( O ̂  ̂̂  to account for the fact that the 

angular momentum does not change along the major axes of 

bodies 1 and x which are respectively and e, . As 

previously mentioned o- 11 . We note that 

the factor is momentum independent. The subscript 

ro signifies that a quantity is evaluated using the 

rigid ovaloid model. 

For a central soft potential  ̂ where 

5 /  =  x " " a n d  K G , t .  T h a t  i s ,  t h e  c r o s s  

section depends on the component of the generalized mo­

mentum along the reaction coordinate and the magnitude of 

the relative velocity normal to . The latter quantity 

governs the "fly by" time and hence, in part, the time of 

duration of contact. 

For a general soft potential it seems physically 

reasonable to expect that  ̂ will sensitively depend on 

and 2̂ (or perhaps some other appropriately chosen 

speed which determines the "fly by" time) as in the case 

of soft spheres. We first assume that I- can be factored 

into  ̂ where the delta functions in Qr-̂ r-̂  

depend on the apse geometry. Then we assume that is 

only a function of the momentum through K 0,̂ % and 



www.manaraa.com

82 

(i.e. that  ̂ ). The («,̂ 1 tensors 

of Equation ̂ .19 then can be greatly simplified. In this 

approximation 

K % ) IK , 1 

(5r ( IÏ1''- Ct-ai) 

where 

W ̂ 4 ^ (4% % 

and % is a vector in the -D sub s pace of 

the 12-D space. From symmetry considerations, it is evi­

dent that the tensorial character of Cy.,\r"̂  can be ex­

pressed in terms of the unit vector A , the projection 

operator P. - P where 

I 
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ç  ̂̂ 4̂  
and the unit tensor in the -D subspace, | 

In order to proceed we rotate the vector , by some 

unitary transformation R , into a frame such that < is 

along the last axis. From Reference 4-7 we see that we can 

construct this transformation such that it does not mix 

the 13 and subspaces with any other components. In 

the transformed space, Equation ̂ .21 becomes 

(. y ,v") = i % 1.  ̂(S 1 
s^-ro 

c-*" I+ iT 11 (̂ +.22) 

where 

= R G.z % - P, I R O.X (4.23) 

and 

% = 1, + (Z 0. (4.24) 

The integrand of Equation 4.22 can be separated into a sum 

of polyads in  ̂(by means of the tensorial equivalent of 

the binomial theorem) as follows: 

^ — V a / V ^ 
(?.<• i ̂ = L % '  ̂ (4.25) 
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and 

(îi * t Y" = i (4.26) 

We adopt the convention that p below a summation symbol 

indicates the sum over all possible unique permutations of 

the indices of the tensor to its right. When Equations 

4.25 and 4.26 are substituted into Equation 4.22, we find 

that 

where we indicate in the brackets the parity constraints on 

the summations. The symbol indicates the restricted 

5LU11 pox'uiuucauxuxis vvcr uiic 

a and the last b indices of the tensor. It is convenient 

in Equation 4.27 to change the indices of summation from 

a,b to vftiere  ̂= a and  ̂ with the result that 

K-n""" -- (-iV" 1 
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? 
h'-' 

t .  \  a  ( 5. V 
i>^?o 

v \a%. c"'-' (4.28) 

The tensor integral over is proportional to an iso­

tropic cartesian tensor of rank u+v-tj . Because of the 

complete symmetry with respect to indical interchange, 

this tensor is 

J""-" f. i ( s'""'\-'r- (4.29) 
14 » ir - P ~ 

We define the coefficient of proportionality between 

and 

^ 
% • ki 

by ̂  . By the usual methods of tensor algebra, we can 

show that 

CK. = ( ' "4 -/a ") y ̂ P U V - //i) ] 
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Ĉ .SO) 

The remaining scaler integral of Equation 4.30 can be 

evaluated by transforming to (n&- 3") -D spherical 

polar coordinates as follows: 

e 

p ( cn̂ -iVa.̂  (4.31) 

lb) 
iiAere ) <i K signifies the angular integrations in a 

 ̂-D spherical polar frame and is given by 

 ̂ (4.32) 

Combining the results of Equations 4.30 and 4.31, we can 

rewrite Equation 4.28 as 

i z o  f̂ -,o r.,^,o 

=(:nM 

in' JZ" iCc)'-'- iVt') . (^.33) 
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The remaining tensor integrals can be linearly expanded 

in terms of appropriate tensors formed from polyads of 

and K . When this expansion is carried out and 

vdien is written as 

, m.3̂ ) 

we find that for the important cases in which m and u-

range from one to three 

I 1, I ̂ ? k &  ̂ (̂ -35) 

- -

+ <^"^=>1 K K kCkK , (^«36) 
" p. , ~ 

(i Z \ ..i - ( 
V '< I 

la 
% )  

" ' i 
(̂ .37) 

(3 3^= L 2. Ik <  J  K  % M 
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- K  ̂  ̂ - 3 1 (.6 
~ ̂  = s P),) 

+ K KK &'''*̂  K - d (Zd - k ;L < U'"' k ") 

-4 1. i  ̂ K c . K : u'"' s ; ") t :i ̂   ̂̂  : (1 ] 
,̂3  ̂ ~ 

.C^-V^'U^ (N' K j. 
1.1> 

< r 

- i 1 p. k K 
\3 

u 
lit 

K K :-s 
V \ 

kk k 
\3 

y"« u KKk )1 

^ ^ L Z ( K K K ^ k f Kd ^I<ki< - VKK lA K 
'\3 

- k u"\2 ̂ ̂  1 - L  ̂K i; 1 g. y;' c 
''i.s 

+ <î  IL y 2. ( K U K K 5 V (< K î K ̂  i  ̂  ̂KKK (4", 38 ) " Pj ̂ ~ % 1 ? 

( ̂ "^y' j- I K •• •-«jï-'j? £ -2 eu7 K:K (4.39) 
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(i, 1^- K H < ij> KK i (4,^0) 

r&n L1 ( jr- - r"'" -c- 4r«i 

- 1 i ( < i'"*' Si -1 u'" t \ - i UÎ Paj = = 

- kQ k  ̂- 3 I  ̂ u.\o< 1 
% % 

c.-ùîi 1 i-i_/j';*'"« 

y-"'' -i.r k  ̂S % H 
- (1 ̂  U 

- 3 U 
CM 

K K K L à  k  k  K  
. . A A. /\ - U K K % 

C  K  K .  à  K  K K L)̂ " K " )  - H k i < , K K > ? ' \  

• 12. ̂  ) 1 J k +̂ 'î 2:v IICkkkU 1 + U'' \< k. K 
" P /%. T. 

».i - %-) 

( .  A  ' V  A  - N  A  
^ X ^ \ y k K k K K 
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and 

^ ar - ̂  \<. vc - K K u 

p ~ 

'-̂ •" IM1 
i.f>i,a% 

'3.1 
\ K <= ̂  

Ci"̂  
-% i. < ̂  

2. KKU'^^K-ll 

K k U'"' K ^ K C C 2 1 + ( 1 ̂  J 
1%̂  

y Q; u"\ (̂ .A2) 
i,J ~ 

with 

<«, = It' I) 4 5 -0, ] a , (4-^3) 

^^->o 
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H = (4.44) 

1 = Li'"' o:,  ̂7 (4.4̂ ) 

J " =  &  ( U " r  ( ^ . ^ )  

and 

J"-' ' i' ( àu,-« u"' , 
% h P 

KS l + i l »y,̂ - ), (4.47) 

In Equation 4.47 Ip means a sum over all permutations of 

only right hand indices of the constituent second rank 

tensors U'" and 4' *"* • Equations 4.35-4.42 we have 

grouped together terms with equal numbers of distinct 

2 permutations= 
K,v 

The tensor 13,1̂  is the same form as (i ,3") ex­

cept that £. replaces - everywhere. From 

the moments equations of Chapter 3, we can see that the 

, 11,3.̂  and (3,%̂  integrals are 

necessary for the calculation of thermal conductivity 

(field on and field off), binary diffusion coefficient 
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and thermal diffusion coefficient and the integral 

is necessary for the calculation of viscosity. The de­

velopment of an expression for of Equation ̂ .33 

still leaves the problem of deriving a specific formula 

for the generalized cross section for a nonspherical soft 

potential. We return to this problem after first de­

scribing a convenient form for 

Reduction of the Tensors in the 
Case of Rigid Ovaloids 

The division of R % of Equation ̂ .22, which was 

adopted in order to perform outright the integrations over 

momentum variables of which ̂  is independent, is need­

lessly a!;jkward in the case of rigid ovaloids. For rigid 

ovaloids is independent of so 

that a more judicious division of % % is given by 

% Q.. % = t . (4̂ 48) 

If the division of Equation 4-.48 is applied to Equation 

4.21, we can show that 
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where the additional factors \ P originate from the 

integration over \ • The expression of Equation ̂ .49 dif­

fers from that of Hoffman (35) because the collision in­

tegrals to which they pertain differ by one being the time 

reversal of the other, i.e. we can write Hoffman's " 

in terms of tu -u-n as follows: - > - V© 

(u,Yl " T tU,0-Vo = ^ 

I 1 t C+.50) 
J=1 pa. % WW-*;. • 

* V-̂ U. 

cirir = -1 i 3 

It is convenient for purposes of checking with other work 

to complete the reduction of the tensor in the "(u 

form. 

The projection operators can be applied more easily 

to '\u. vi" if the tensors contained in 

J are expanded in terms of k and kvc , 

Accordingly we expand J* (X = ut- ir-i into 
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where aT ̂ 'ï , When Equation is 

inserted into Equation 4.̂ 0, we derive after rearrangement 

of the sums 

" , U4-V- ^ ^ ,1^.6^ 

&.V1 - V.'«1̂  ' J., f.„ j 

 ̂ t. '•"•i 

I >=''• V (-i >. bi (-i-r̂ M b-b'̂ \ ̂  ] (4.52) 

where Bj is zero when { is even and unity when  ̂ is 

odd and where 

X. . = (WO P rvi ih .53)  

The bracketed quantity in Equation 4-. 52 can be evaluated 

separately for a whole series of b' and for even or 

odd rank collision integrals. Thus we have derived an 

expression of only slightly greater complexity than Equa­

tion 4.̂ 0 and one to which it is much easier to apply 

projections. We could not proceed to list the "(y.,vrV' 

quantities needed in the rigid ovaloid calculations. 
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Instead we show below how they can easily be derived as 

rigid limits of more general expressions. 

Further Reduction of the Tensors in the 
General Potential Using the Kihara Model 

Kihara (3̂ ) has introduced a molecular interaction po­

tential which assumes that the molecules consist of impen­

etrable hard cores which interact via a potential which is 

a function of the shortest distance between the cores. This 

model leads to molecular forces which are directed along the 

vector connecting the points of closest approach of the 

cores and to torques which can be thought of as arising 

from application of the force on a given molecule at the 

closest approach point on its core. Thus the direction 

of the forces and the "lever arms" for the torques are in­

dependent of the magnitude of the separation and instead 

depend only on the orientations of the molecules and a unit 

vector along the distance of closest approach. Two obvious 

examples of this model are spherical̂  soft molecules and 

rigid ovaloids. 

If we define the generalized force by - I , 

then averaging over the collision time leads to the average 

force 7 = kF  ̂ where F is a constant of the motion. 

Thus the average generalized force is directed along < . 

For rigid ovaloids and for soft, spherical molecules, the 
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generalized force at the apse point is directed along the 

apse vector. In the first case this results from the fact 

that the collision is instantaneous, and in the second case 

from the fact that the collision trajectory is symmetric 

about the apse vector. This is not generally true for all 

interaction potentials. 

Our object now is to reduce the expressions of Equa­

tion 4.43 to the same functional form as for spherical po­

tentials (i.e., to reduce the collision integrals to a 

linear combination of the so-called n.* integrals (46)). 

These are dimensionless, two-fold integrals which are 

relatively easy to compute for any central potential and 

which have been extensively tabulated for the Lennard-

Jonss model (46, 48)= To obtain this reduction we make 

two assumptions. We first assume that the apse vector 

(i.e. the unit vector along the average generalized force) 

is along the generalized force at the apse point. It fol­

lows from our previous discussion of the Kihara model that 

in this approximation ̂  is solely a function of », and the 

Eulerian angle sets 2,̂  and ççj_. Finally we assume a gen­

eralized cross section of the form 

(4.54) 
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where is the spherical differential cross section 

for a potential with zero interaction energy at the separa­

tion distance, . The differential area is that 

swept out by molecule z for a differential solid angle 

change d at zero interaction energy holding the Eulerian 

angles 5̂  and eç» fixed. This form for ̂  reduces to the 

exact expression for the cross section for rigid ovaloids 

and for soft spherical potentials in the appropriate limits. 

Physically, the assumed momentum dependence is that for a 

spherical potential but with a sphere radius and a sphere 

center which vary as a function of A. and the Eulerian angle 

sets «-i and X; . It should be emphasized that although 

is the spherical cross section, Equation 4.̂ 4 is not 

a spherical approximation since, in general, < . 

The functional form of the generalized cross section 

of Equation 4.̂  is the same as that of Equation 4.33 and 

hence leads to the integrals of Equations 4.35-

4.42. When Equation 4.54 is substituted into Equation 

4.43, the scalar integrals are of the spherical form. 

Thos with integrands even in 1 can be reduced to a linear 

combination of n."* integrals. Those with integrands odd 

in 1 can be expressed in terms of integrals which differ 

only slightly from the o.* integrals. These modified 

integrals do not arise in the case of soft spheres (or any 

other interaction model for -vdiich inverse collisions exist). 
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The (y,v̂  integrals , 

(, i , 1 ̂ and (I (all of which are even in % ) are 

given by 

en"''" «-« , Ct.î?) 

I a"'"* L » (A""* - n"'"" ) 
'w 

s ; 11'" ; . ( (. a""* - 1 a'"" i (4.%) 

(i,ïi = (i U n"'''* I k 

1 « u'" ; - y i; K J « ] ct.g?) 

and. 

(l.ïl = t' .1 
5.4 

K i. H 11 ri 
11,11* 

- i n  -3 il 
Cl.l") * 

( K V. & 

\1> 

A 
i K + K 4 K K K n 
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-a"'"' i : s j'"" êi - i 

(J, u jt*-" «. Î j:'.(% 

. Î a"-"* . b a"-''* 1 n'''" * - \ ; 

» (4 l3n"-"\v la"-"' -3 a"'"* ) 

->j n"-"̂  ) ( 1 ( 5 u"\-;j ; sî u,'" Î Nj ̂  
•̂a t '*' 

> (n''-''* -  ̂ i ,;c u" CÎ 

+ t( H a"'"* -1, a"-"' +3 - a n."'"" 

1 » 3 A"'"' •) K K K c c : Ct.jS) 

('l.!") is again of the same form as (%,V) with 

replacing and where 
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OS \ . (If. 59) 

For this general soft model, completion of the evalua­

tion of the collision integrals requires projection on the 

tensors by , contraction of these tensors 

with j and integration of the resulting scalars over < . 

In Appendix D we show for even rank tensors how these 

first two steps can be expeditiously carried out. From 

the assumed form of  ̂ of Equation ̂ +.5̂ , the integration 

over K is equivalent to the usual integration over , 

5 i and % a o 
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CHAPTER 5. RIGID CONVEX TETRAHEDRAL MODEL AS APPLIED 

TO THE SEIJFTLEBEN-BEENAKKER EFFECT IN GASES 

COMPOSED OF CX̂  MOLECULES 

In References 10 and 11 the changes of the components 

of the thermal conductivity tensor induced by an external, 

static magnetic field were measured. In the case of the 

measurement of and , the apparatus consisted of 

two identical cylindrical cells placed between two brass 

plates which were held at the same constant temperature. 

A thin steadily powered hot plate of slightly smaller 

diameter than the cylinders was placed in the center of 

each cylinder parallel to the end plates. One cylinder 

was filled with a noble gas, which exhibits no field ef­

fect, and one cylinder was filled with the polyatomic gas 

under study. The field was applied first parallel to the 

axis of the cylinder and then perpendicular to it. The 

quantities and 6 were related to temperature 

readings in the hot plate in the polyatomic gas cylinder 

relative to simultaneous readings in the noble gas cylinder 

In the case of the measurement of , a cylinder was 

mounted between a hot plate and a cold plate and was filled 

with a polyatomic gas. Then the field was applied perpen­

dicular to the axis of the cylinder and the temperature 

difference was measured in a direction perpendicular to 
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both the axis of the cylinder and the direction of the 

field. After calibration with noble gases, the measured 

temperature difference was related to >-3 . 

In Reference 12 the magnetic field's changes of the 

components of the viscosity tensor were measured in the 

combinations and ( 2. - lî - W 

These measurements were made by running a gas at constant 

flow rate through a set of four identical capillaries 

lined up in parallel two by two. The magnetic field is 

placed across one or two of the capillaries and the pres­

sure drop is measured across different points of the sys­

tem. These pressure drops are related to the above com­

ponent combinations for certain field configurations. 

In Reference 13 the magnetic field's changes of the 

viscosity tensor components and I Is were 

measured. These measurements were made by applying a 

magnetic field across a capillary of rectangular cross 

section and relating the pressure drop across the long 

side of the rectangle to these viscosity components. 

Of the gases studied in References 10-13, we concen­

trate on those with tetrahedral symmetry, namely CĤ ,̂ CDĵ  

and CF̂ _, The model that we use is a rigid convex body of 

tetrahedral symmetry. The supporting function of such a 

body labeled i is by Appendix A I 

where the four unit vectors extend from the origin 
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(which is taken to be the mass.center) in the direction of 

the vertices of an imaginary regular tetrahedron. The 

simplest nontrivial supporting function of this form is 

2 Ik'", (5.1) 
S- s-  ̂

where and are constants. 

We parameterize this model by , the average 

cross sectional area described in Appendix A, and the 

ratio of the largest iC'M (vAiere g is a vector 

from the origin to a point on the surface of i ) to the 

smallest. The average cross sectional area determines the 

size of a figure. The parameter Rfor a body specified 

by the supporting function of Equation ̂ .1 can be shown 

to be 

M /  (5 .2)  

For a regular tetrahedron R'-3 . As was mentioned in 

Appendix A, the differential surface area of a convex 

body must be positive over the entire body. The resulting 

condition of convexity for a figure described by Equation 

5.1 is that can range from unity to 1.̂ 2. We plot the 

contours of a convex tetrahedral model in Figures 5*1 and 

5.2 for a typical value of 

Now that a model is specified, we are left with the 
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Figure Upper surface contours (Z20) formed by passing 
planes through a tetrahedral model with R = 
1.19 and its z-axis (origin at the geometric 
center) passing through one vertex, are shown. 
These planes are perpendicular to the z-axis 
and are taken at unit intervals along the z-
axis 
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Figure 5.2. Here we show the lower (Z<0) surface contours 
for a tetrahedral model (see Figure 5*1) 
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task of performing the scalar collision integrals which 

appear in the moments equations. These integrals are, by 

Equations 4.6 and h,20, of the form 

i o""" I i , , t J = ("•-? V ̂ [àX 

4 (5-3) 

where 

and where we have rearranged the order of integration. 

The integrations over the orientations of body i and body 

1 constitute a four-fold multiple integration (one angle 

integration in each body is trivial if %. is held fixed). 

It would be a substantial time-saver if we could write the 

integrands of Equation 5.3 as a sum of terms each of which 

is a product of factors: one factor being a function of 

the orientation of body i and the other of body a. . The 

result of this time-saver is that we only have to evaluate 

two-fold integrals. We illustrate how this separation can 

be achieved using the integrands necessary for the determi­

nation of the collision integrals used in the analysis of 

the Senftleben-Beenakker effects in spherical top molecules. 
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However the method is of general utility. 

The integrands investigated are D , ( j )/n'" , 

(Sro a \ )  / o" , {"orc \ \) I  and I I  ^ The 

quantity 0'̂  can be written as 

D = ( 1 (l + Qi 1 * Ll- 11 ̂  (5.^) 

where the last factor of this equation can be expanded in 

the convergent series 

11 - y % 
( i. V "> < 1. + 

2_ 
r=o <-1 

( i + al ') ( 1 4'' (5.5) 

The integrands in question can therefore be written as 

1 

u. 
c*» 
1 
r = 0 

a, «r ar 

[-\ (%•' G I .. ll"> 1- (.% Ill 
(5.6) 
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P (%") r\ ( + 

G.o, : a, a, l- L ( %".. s"] Ĉ -?) 

where we have used Equation A. 16 to evaluate . Orien­

tation integration of the expressions of Equation 5.6 leads 

immediately to single molecule scalar integrals of the form 

- . 1<-"I ^  ( . i \  tLS 
S ' s ^ 

and tensor integrals of the form 

S 4 S. 

where represents some scalar function of the orienta­

tion angles of body l . Since it can be shown that 

is proportional to V' ( - t'"' % ), we derive that 

'0"'% (5.8) 

Orientation integration of the expression in Equation 5*7 

results in the single molecule tensor integrals of the 

forms 
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and 

C l  r  \d . 

The first of these two integrals is proportional to \A'̂  

( - - Jk k ) and hence we can write that 

q": G'"' a,a. ^ ^.(^.9) 

The second of these integral forms can be expanded linearly 

as follows: 

V.i s"" s. s. b- - i-r' y I .a-H - f") 

. . i '(. ..\ > I \ I \ s 
i 1 (̂ " 4- nztljt - ; 15.10; 

Tiihere 

= L I (̂ .11) 

\ (5.12) 

and 

?"•"'=  ̂ (5.13) 

with 
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V 
s (5.1̂ ) 

and 

a-^ ; Y'"' . (5.15) 

Therefore we can write any integral in the form of a sum 

of products of integrals over the orientations of a single 

molecule. In practice we truncate the series of Equations 

5.6 and 5*7 at ten terms. The orientation integrations are 

performed numerically. 

We now show the comparison between the Senftleben-

Beenakker effect data on CX̂  molecules of References 10-13 

and the best fits of that data. These fits are achieved 

by using the rigid tetrahedral convez model and by optimis­

ing the values of that model's parameters, ̂  and  ̂ . 

The measurements of and aa, were made at room tem­

perature and of at 85°K for and CDĵ  and at 93 

for CF̂ . Therefore we fit and & with one set of 

parameters and with another. We use a single set of 

parameters per species to fit all the room temperature 

viscosity measurements. Different parameters are used for 

viscosity and thermal conductivity. For a certain species 

at a given temperature, relations between the components of 

 ̂ are fixed theoretically. The same is true for % . 
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Therefore we need only fit one component of each of these 

tensors with a single parameter set. The properties are 

all plotted as a function of a dimensionless field strength 

magnitude, p, , which is given by 

where is the nuclear magneton, is the rotational 

g factor found from other measurements and d is the bond 

length. 

The procedure for obtaining the optimum fit is to 

choose a reasonable value for < j ? . Then B of Equation 

5.1 is varied to reproduce the property's characteristic 

value (either its nonzero saturation ( H = =« ) value as in 

the case of  ̂ or its maximum value as in the 

case of ~ max . We find that if B is 

held fixed while <«"7 is varied, the property's character­

istic value does not change. Therefore the vaxue of <0̂ 7 

can be varied to fit the remaining features: the field off 

value of the property and the p value at lAiich a character­

istic value occurs. For the properties which saturate at 

high field strengths we fit the value of the field strength, 

Avi , at which the property achieves half of its satura­

tion value. We indicate for as , 

for 6̂ 1/A. as and for  ̂A? /-̂ o as . For 

(5-16) 
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the properties which have a maximum value we fit the di-

mensionless field strength, , at that maximum. We 

indicate for 6%̂ /%» as , for 

as , for as 

and for as PlIZx • 

In Figure 5*3 we demonstrate the graphical method em­

ployed to determine the optimum value of <<y once B has 

been fixed by matching the characteristic value. The 

property used in this demonstration is of CHĵ . 

If we assume that experimental measurements of and 

are both equally trustworthy, then we would take a 

value of <0-7 15 (where their ratio curves intersect). 

If we assume that Ao is a much more reliable measurement, 

we would take <c? 11 where experimental is equal to 

the calculated va±ue of  ̂ . 

In Figures we show the results from fitting 

A A1 and AX 1 / >„ at 300°K (10) for CHĵ , CD]̂  and CF̂  ̂

respectively. The parameters which were used are those 

given in Table 5̂ 1 for which the measurements of both 

and and are considered equally trustworthy. 

In Table 5*1 we also compare the experimental values for 

these species of ) , 3./̂  ̂

and with values calculated from the parameters which 

fit Xo and equally, and those which fit exactly. 

The agreement with experiment is not quite as good as that 
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Figure 9.3. A plot of (a)̂  = âlĉ êxp " = AXgÂ , Pi/g, \ 

<a> 2̂  for CĤ  where B (Equation $\1) is held fixed 
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A plot of (aXĵ /Xq), (A)v.2Aq) vs. P 
The solid lines are tho calculated 
are the experimental results 

10̂  10 

(see Equation 5*16) for CH)̂ . 

results and the dashed lines 
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Figure 5*5* Symbols are as in Figure 5»̂  
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Figure ̂ .6. Symbol» are as in Figure for CF̂  
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Table 5*1« Comparison of experimental (10) (in parentheses) and theoretical 
values for \q in calorie.'j per centimeter second degree, 

(Â 2̂ ô̂ sat» In the top line for 
each molecule R and <o> are determined by optimally fitting Xq and 

whereas in the second line only Xq is fitted 

Gas R XqXIÔ  -(A\i/Xo)8at%10̂  -(AXg/Xq̂ ĝ tXioS 
<̂£. 

1.0844 15.1021 6.59 1.84 41.5 2.78 29.0 

1.0968 11.6097 8.75 1.84 34.2 2.78 21.8 

(8.75) (1.72) (58.5) (2.75) (37.8) 

C\ 1.1187 13.7311 6.48 2.12 40.0 3.19 26.5 

1.1392 10.1781 8.77 2.12 29.9 3.2 20.0 

(8.77) (2.05) (55) (3.2) (35.8) 

CPî  1.2227 16.9798 2.50 2.81 33 4.24 22.0 

1.2902 10.5293 4.01 2.815 20.5 4.24 14.0 

(4.01) (2.18) (54.3) (4.3) (36.0) 
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obtained for the application of the rigid ellipsoid model 

to diatomic molecules (3I). 

In Figures 5*7-5»9 we show the results of fitting the 

experimental (11) magnetic field dependence of 

for CĤ ,̂ CD)̂  and CF̂ .̂ The fit is about the same as for 

the other components of thermal conductivity. The model 

parameters used in these figures are listed in Table 5»2 

and are derived assuming all measurements equally reliable. 

Also listed in Table 5»2 are the comparisons of calculated 

versus experimental data for , <•  ̂ and 

(b for these species. 

We plot the experimental (12) and calculated field be­

havior of and ((1̂ 1-Til ) for CĤ  

and CF>̂  in Figures 5-10-?»ll respectively. For we 

plot the calculated and experimental (i3) field behavior 

of and l-̂ o) in Figure 5-12. The parameters 

used in all viscosity cases are given in Table 5-3» These 

parameters were found by fitting 6 in the usual way and 

by fitting <0-7 to match only the experimental x* because 

the calculated (i features are not really improved by 

reasonable changes in <0-7 . Also listed in Table 5̂ 3 are 

the experimental and calculated values for , 

6m.. , , (Is/ and 

. The agreement with experiment of the (3 values is 
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Figure ?.7. A plot of vs. P (see Equation 5*16) for GHĵ . The solid 

line is the calculated result and the dashed line is the ex­
perimental result 



www.manaraa.com

/ 
/ 
/ 
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Figure 5̂ .9» Symbols are as in Figure 5>7 for CF̂  



www.manaraa.com

Table 5*2. Comparison of experimental (11) (in parentheses) and theoretical 
values of Xq in calories per centimeter second degree, (̂ 3/̂ ô ma 

Gas R <a>(&2) XqXIO^ B(3) 
•^max 

CH^ 1.0542 31.6380 1.675 1.08 58 

(2.14)* (1.08) (74) 

CDi^ 1.0781 28.2195 1.680 1.33 52 

(2.14)* (1.30) (66) 

CFl+ 1.1200 38.3241 0.617 1.19 46 

(0.753)^ (1.2) (58) 

Ŝource : 

Ŝource : 

Reference 4-9. 

Reference ̂ 0. 
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,nO lO' 

Figure 5.10. A plot of Any%, ,  ̂(see 

Equation 5.16) for CHî . °The solid lines are 
the calculated results and the dashed lines 
are the experimental results 
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Figure 5oll. Symbols are as in Figure 5.10 for CF̂ . 
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Figure ̂ ,12. A plot of %'/%, vs. P (see Equation 5.16) for CĤ . 

The solid lines are the calculated results and the dashed 
lines are the experimental results 
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Table 5»3- Comparison of experimental (12, 13) (in 
parentheses) and theoretical values of t]q 

in g per centimeter second, (At]-/t]̂ ) . 

(2l2 - 4 - lo W' W' 

Gas CH^ CFi^ 

R 1.0311 1.1̂ 60 

<a>(Ŝ ) 13.3905 19.6721 

T]̂ 10̂  1.084 1.717 
(1.09) (1.709) 

-(——̂ ) ̂ xlÔ  1.0 h , 6  

0̂ (0.99) (4 .6)  

1.2 5.8 
 ̂ (37.3) (38) 

0̂.32̂  

0.8 4 max 

Til'. 

(29.4) (37.6) 

(g;5:'o) 'if 

C 2:3? 
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Table 5-3 (Continued) 

Gas c\ CF)+ 

<• f 0.49 
(O.lfO) 

2.27 

p(5)  
m̂ax 1.15 

(35)  
5.75 

not as good as for thermal conductivity. This was also 

observed in the case of diatomic molecules (3I). 

In Table 5-̂  we show the results for and of 

fitting 5 Î ( /I'X.t and 

using a fixed <0̂  ̂ and varying ̂  . We do not show any 

 ̂value to fit and for because the R 

value needed is so large as to be beyond the limits of 

meaning for our model. We can conclude from this that a 

model of much higher ncnsphericity (greater R ) is nec­

essary to fit the field strengths at which the field ef­

fects occur than to fit the magnitudes of the field ef­

fects themselves. 

For viscosity the crucial collision integral determin­

ing (3 values at which changes in the transport coefficients 

occur vanishes in the spherical limit ( R= l ); but this is 
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Table List of R values that fit (for fixed <cr>) 
experimental values of (̂ 2̂/̂ ô sat' 

pŷ \ (An̂ /nô sat' ̂  ; for CĤ . and CF̂ . 

RcH (̂<cr> =13.4614- 2̂ ) Rg (<a> =19.9293 

1.085 1.158 

Py '̂̂  1.30 

(Ang/lô sat 1-031 1.06 

^ ̂ 1.236 , — 

not the case for thermal conductivity. As a consequence 

only the magnitudes of the field effects are extremely 

sensitive to the nonsphericity (degree to which R > 1 ) 

for the thermal conductivity; whereas both the magnitudes 

and the field strength values are sensitive to the non-

sphericity in the case of viscosity. Hence the fact that 

substantially smaller R values are required to fit magni­

tudes than are needed to fit field strength values is of 

numerical importance in the case of viscosity but not in 

the case of thermal conductivity. This accounts for the 
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better agreement with experiment in the latter case. 

In summary we conclude that the rigid models give com­

parable results for linear molecules and those with tetra-

hedral symmetry. In both cases agreement is less satis­

factory for viscosity than for thermal conductivity. 
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CHAPTER 6. THE GENERAL SOFT POTENTIAL 

The Limitations of the Rigid Ovaloid and 
Soft Sphere Models 

Though the rigid ovaloid model has been shown to be 

capable of reproducing the major features of the magnetic 

field changes of thermal conductivity and viscosity, it 

cannot be used to calculate temperature dependence of these 

effects. The reason is that there is no way to parameterize 

the temperature dependence with this model since the cross 

section, , is energy independent. A phenomenon 

in ̂ ich temperature dependence is particularly important 

is the thermal diffusion ratio in isotopic binary mixtures. 

The thermal diffusion ratio, , is defined by 

= ("P ") / ( n,  ̂ (6.1) 

Matzen et al. (31) have found that the rigid ovaloid 

model gives reasonable estimates to the effects of rota­

tional degrees of freedom on on binary isotopic mix­

tures of CO at a single high temperature. However the 

predicted is temperature independent. As a consequence 

the important phenomenon of temperature inversion of 

(a reversal of the direction of thermal diffusion at low 

temperatures which causes the sign of cC to change) is 

completely missed. The attractive part of the true inter-
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action plays a central role in determining this last 

property; and, of course, rigid ovaloid molecule models 

suffer only repulsive collisions. A related difficulty 

with the rigid ovaloid model is that the spherical part 

of the collision cross section is unrealistic. As a re­

sult, if there is an important spherical contribution to 

the property of interest (as in the case of thermal dif­

fusion in a binary mixture whose components have different 

masses) the rigid ovaloid model is again unsatisfactory. 

The soft sphere model has no collisionally active 

rotational degrees of freedom and hence cannot be used to 

predict magnetic field effects. Although this model pre­

dicts a temperature dependence for , there is no way 

of indicating differences in mass distribution with it. 

Thus, contrary to experiment, the soft sphere model pre­

dicts no thermal diffusion effect for a mixture composed of 

components of the same total mass but different mass dis­

tribution. 

An attempt was made by Cooper et al. (51) to correct 

the deficiencies of the rigid ovaloid model calculations 

of thermal diffusion ratio in a simplistic way. The method 

used was to add the rigid ovaloid results for and 

to the difference for these respective properties as cal­

culated using the Lennard-Jones spherical model and the 

rigid sphere model. The results obtained using these 
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corrections were not a satisfactory improvement. Thus it 

is necessary to employ a general soft potential for this 

problem. 

The General Soft Model Applied to Thermal Diffusion 
in Binary Isotopic Mixtures of CO 

We now apply the general soft model, based on the col­

lision integral formulation of Chapter h, to the analysis 

of the temperature dependence of (xT in binary isotopic CO 

mixtures. The temperature span studied is from 80°K to 

300°K and includes the reported (15) inversion temperatures 

for all mixtures under investigation. In addition we de­

compose the calculated thermal diffusion coefficients into 

their additive contributions arising from the mixture com­

ponents* differences in mass, moment of inertia and load 

(center of bond displacement from the center of mass). To 

test the model we calculate, using the same parameters, the 

thermal conductivity and diffusion coefficients over the 

same temperature range. These latter transport properties 

are largely determined by the spherical contribution to the 

cross section. In the present work we use the thermal con­

ductivity to fix the parameters which govern the spherical 

part of the interaction. This procedure has the advantage 

of widening the range of applicability of the model and at 

the same time leaving only the nonsphericity parameters to 
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be determined from the thermal diffusion data. Following 

the Born-Oppenheimer approximation, we use the same model 

parameters for all CO isotopes. 

The importance of quantum effects (which might be im­

portant at the lower range of the temperature span) is not 

rigorously assessed. We note, however, that the character­

istic rotational temperature of CO is 2.8°K and hence the 

maximum contribution to equilibrium thermodynamic prop­

erties from these effects is of the order of one percent 

at 80°K. Unless the effect on thermal diffusion is several 

times greater, it will not be significant. 

The moments equations and the equations relating their 

solutions to the transport properties (thermal diffusion, 

thermal conductivity and diffusion) of linear molecules are 

given in Chapter 3. The collision integrals required in 

the moments equations can be calculated from projections 

and orientation integrations over the expressions 

of Equations ̂ .55? ̂ *56 and 4-.̂ 8. The integrands of these 

orientation integrals depend on four interaction parameters. 

These parameters can be related in a nonrigorous way to the 

Kihara type model of Chapter h which assumes that the mole­

cules are surrounded by body fixed ellipsoidal (in this 

case) cores. The potential energy of interaction is a 

function of the shortest distance between cores (if the 

cores overlap, a distance of analogous significance can be 
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defined). The functionality of the interaction is taken 

to be the Lennard-Jones potential. When the cores are in 

contact at only a point the interaction energy is zero. 

The parameter which determines the value of the inte­

grals is , the depth of the well of the Lennard-Jones 

potential. The three geometric parameters, which determine 

the differential surface area of the cores' excluded vol­

ume, are <0-7 , the average cross sectional area of the 

core,R , the ratio of the major to minor axis of the core, 

and Ss , the displacement of the center of the ellipsoidal 

core from its bond center (measured in units of the minor • 

axis). A positive value of means that the ellipsoid 

surface is nearer to the carbon atom than to the oxygen 

atom in CO. The parameters and basically govern 

the spherical part of the interaction -vrtiereas R and 

characterize the nonsphericity. In order to perform the 

orientation integrations we must specify the dependence of 

the integrands on the above parameters. 

The model geometry determines the functional form of 

S a k., the differential surface element of the volume which 

is equivalent to the excluded volume formed by considering 

the zero potential cores as rigid ovaloids. Therefore the 

methods of Appendix A used to form can be used in the 

same way to form s . 

In the case at hand, the supporting function of an 
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ellipsoidal model, in the coordinates of the center of mass 

systems of body i is given by 

 ̂ (6.2) 

where a*"'̂  is the length of minor axis, è is a unit 

vector along the carbon-oxygen axis and points from oxygen 

to carbon and ct! is the displacement of the center of the 

bond from the center of mass. A positive value of 

and cause displacements in the same direction. The 

parameter accounts for the difference in the repulsive 

qualities of the oxygen and carbon ends of the molecule. 

The supporting function of Equation can be inserted 

into Equation A.8 with the result that 

i l .  

- Tan ̂  V- 1 1 Î . (6.3) 

Therefore the specification of < c and R' gives 

Because of the symmetry of the ellipsoids ( h""̂  = 

K''"* ( Jb - e the only nontrivial orientation inte­

grations are over ( and ( ê'̂ '') . The 
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integrals are therefore of the tractable two-fold variety 

which can be performed directly without the expansions 

required for tetrahedral shapes. 

The spherical, Lennard-Jones parameters (e/tl and 

<ay are fixed by fitting the calculated thermal conductiv­

ity of pure to the experimental data (52) over the 

temperature range from 100°K to 300̂ . Since the thermal 

conductivity is a "mean free path" type transport property 

it is fairly insensitive to small variations in R and G, 

and can independently fix and It is found 

that for a reasonable range of R and values, the 

thermal conductivity is fit within experimental error by 

the parameters = lM+.3°K and = (1.78)̂ îrŜ  (see 

Figure 6.1). The calculated self-diffusion coefficient, 

which is also dominated by the spherical part of the inter­

action, is compared with experiment (53, 5̂ ) in Figure 6.2. 

It is seen that different and values (primarily 

those of <«"7 ) are required in this case. This discrepancy 

in potential parameters between different transport proper­

ties is observed also for monatomic gases and hence can be 

at least partially ascribed to the approximate nature of 

the Lennard-Jones potential. 

Boersma-Klein and deVries (15) have measured thermal 

diffusion ratios of CO and Ng. The device they used was an 

eight tube swing separator which consists of eight enclosed 
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Figure 6.1. Thermal conductivity of for the temperature range 100°K-

300%. Experimental data (Reference 52) denoted by X, and ŝ id 
line denotes theoretical curve calculated using - l4-M-.3̂ v, 
<rcr> = (l.78)̂ :r%̂  R:: 1.06 and S, = 0.057 
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e 6.2. Diffusion coefficient for vs. In T. Experi­
mental data of Reference ̂ 3 denoted by ® and experimental 
data of Reference (for 12cloo-12cl6o) by X. (Theoretical 
curves for the two mixtures are nearly identical) 
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copper tubes mounted between two copper blocks. The top 

block (hot end) is kept at 303°K and the bottom block (cold 

end) is varied from 260°K to 80°K. The top end of the first 

tube is connected by a capillary to the bottom end of the 

second tube and so on until the top end of the seventh tube 

is connected to the bottom end of the eighth. The equality 

of concentration at both ends of each capillary is main­

tained by a pump. A binary mixture of a certain concentra­

tion is entered into all the tubes at the start of the exper­

iment. Then after a steady state is reached, the concen­

tration is measured in the bottom of the first tube and in 

the top of the eighth. The measured quantity, which is 

called the separation factor is defined by 

4 S I / I X / (1 - (6.4J 

where X is a mole fraction, \ is the temperature of the 

cold end and is the temperature of the hot end. The 

separation factor is related to the thermal diffusion ratio 

by the relation that 

4m = -% ^ d T (6.5) 
T 

c 

from which it follows that plotting j- against 1 

with a constant \ gives oc' at 1̂  as the slope of the 

graph. We concentrate on the isotopic binary mixtures of 
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CO for which thermal diffusion is measured in Reference 1$". 

We calculate and using the values of 

and <0"? determined above and variable R and S, param­

eters. The values which give the best fit to the experi­

mental (15) \ points are R = 1.062 and = .0566. 

There is some justification in giving more weight to low 

temperature points since, by definition, ( T = 303°E) 

= 0 in all cases; however, for simplicity, we give all ex­

perimental points equal weight in our work. Other fitting 

procedures could be used. For instance special weight could 

reasonably be given to the equimass mixture since in this 

case there is no dominant spherical contribution due to 

mass differences. As a third alternative the R and 5% 

values could be chosen so that the inversion temperatures 

are in the closest possible correspondence to the tempera­

tures reported by Boersma-Klein and deVries (15). These 

variations in the fitting procedure leave the best choice 

of parameters substantially unaffected. To a degree this 

indicates the uniqueness of the R and Sg values. The 

agreement between experiment and theory for each of the 

four mixtures is shown in Figures 6.3, 6.4', 6.5 and 6.6. 

It has been shown by perturbation studies (55) that 

the thermal diffusion coefficient for isotopic mixtures 

can be decomposed into a sum of additive contributions 

arising from the differences in mass, moment of inertia 
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Figure 6.3. In q vs. ln(303°K/T) for Sym­

bols are as in Figure 6.1 
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Figure 6.4. In q vs. ln(303°K/T) for Symbols are as in 
Figure 6.1 
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Figure 6.?. In q vs. ln(303°K/T) for ̂ . 
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Figure 6.6. In q vs. ln(303°K/T) for 
Symbols are as in Figure 6.1 
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and load between the two species of the mixture. In Fig­

ures 6.7, 6.8, 6.9 and 6.10 these separate contributions 

and their sum are given for each mixture. We find in gen­

eral that the load contribution increases with S, and is 

very sensitive to its value. On the other hand, the moment 

of inertia term increases with R . Since a small R and a 

large Sg value are employed in the calculations displayed 

in Figures 6.7, 6.8, 6.9 and 6.10, the load contribution dom­

inates that of the moment of inertia. As the R. value is 

increased the best fit of  ̂ requires a decreasing 5̂  

value and hence the relative importance of the moment 

inertia contribution increases. For instance at R = 1.2? 

and S5 = -.03̂ 2 the contribution of the moment of inertia 

dominates that of the load. However, the fit in this case 

is much poorer (by a factor of six in the error). 

It is of interest in this regard that Boersma-Klein and 

deVries (15) are able to empirically fit their data (using a 

dimensional analysis due to Schirdewahn et al. (56)) by 

taking into account only the mass and moment of inertia 

differences while ignoring the load. 

The trends in the relative importance of the moment 

of inertia and load differences are qualitatively similar 

to \Aiat is found for rigid ovaloids. Also the R and 

values we find are in the meaningful range for rigid 

ovaloid calculations (3i). However, because of its 
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Figure 6.7. ). Temperature dependence of 
additive contributions to dJ (see text). 
(... load, - moment of inertia, sum) 
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Figure 6.9. Temperature dependence of additive contribu­
tions to dJ (see Figure 6.8) 
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Figure 6.10. Temperature dependence of additive contri­
butions to dJ (see Figure 6.8) 
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previously discussed failings, the rigid ovaloid model is 

only useful for qualitative calculations and hence a unique 

set of R and 5̂  values cannot be determined in this case. 

The shift parameter, , is positive, which is in agreement 

with the fact that oxygen is more electronegative than car­

bon. The value of S, estimated from covalent radii is 

positive but much smaller than the one we report. 

From Figures 6.3, 6.̂ , 6.5 and 6.6 it is seen that the 

best agreement with experiment is for the equimass mixture 

and the poorest is for The fit for the re­

maining mixtures appears to be slightly outside of the 

scatter of experimental data. The lack of agreement be­

tween theory and experiment for may be as­

sociated with the fact that this is the only mixture for 
no T O 

which one species (i.e., has both the largest mass 

and the largest load. As a consequence the behavior of 

the load contribution for this mixture is different from 

the others as can be seen in Figures 6.7, 6.8, 6.9 and 

6.10. 

In Table 6.1 the theoretically calculated inversion 

temperatures and the inversion temperatures reported by 

Boersma-Klein and deVries (l5 ) are given. The latter were 

obtained in an empirical manner from the Schirdewahn theory 

While they are consistent with the data it is apparent that 

a rather large latitude in the values taken for the 
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experimental inversion temperatures is permissible. In 

particular it is not clear from the data given in Figure 

6.5 that the mixture undergoes temperature 

inversion at all. Thus the application of the new theory 

for performing collision integrals for a general soft po­

tential is seen to have a wide range of application and 

the results are in good agreement with experiment. 

Table 6.1. Thermal diffusion inversion temperatures 

T(experimental)°K T(calculated)°K 

2k7 24-7 

13cl6o/12cl6o 18̂  165 

110 82 

Î cl6o/12cl6o 173 163 
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APPENDIX Ao SUPPORTING FUNCTION GEOMETRY 

The supporting function, K'" , of a body «- with 

outward normal is defined as 

k" c'"-Î'" (A.l) 

^ Co) 
where  ̂ extends from the origin in body I to a sur­

face point specified by the unit normal . In order 

to obtain an expression for Ç in terms of ' we 

define the operator by 

where a''' and are the spherical polar angles of 

and and are the corresponding unit 

vectors. Then 

. (A.3) 

The term 7̂ - is zero because the differential change of 

is in the tangent plane. It can easily be shown that 

'A- (AA) 

and therefore we can write Equation A.l as 
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g "1= IT AT" + (A.?) 

Hence specifies the geometry of the body. 

We now construct a set of  ̂unit vectors Ce'J"', è̂ ) 

so that they form a basis for a representation of the sym­

metry group to vAiich the molecule under consideration be­

longs. A supporting function of the form 

k"' = k"' ( (A.6) 

is a basis for the totally symmetric representation of this 

group. By Equation A. 5 the body generated by a supporting 

function of the form of Equation A.6 will possess the same 

symmetry as the molecule. 

T *.-» A- «-» T.ro TT o O v_ 
XX.1 ilid W J. V/Xao  ̂ IAXXW Ck** 

pression for the average cross sectional area, < cr"'.> , 

which is the average over all orientations of the projected 

area of body i onto a plane perpendicular to the projec­

tion whose operation we signify by P . The unit vector in 

the direction of the projection is defined as 8''̂  and 

the plane perpendicular to Q is defined as AV . 

The normal of the body i surface points whose projections 

form a perimeter for the lAiole body's projection satisfies 

the condition that - q''' = o . For a body whose sup­

porting function is of the same form as Equation A.6, the 
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supporting function of its projection's perimeter is of the 

same functional form except replaces 

- ê for all n . We can thus show that 

o'-'; ' 'id S"' S ( î'-\ â'-"i 

W'"( 5" (A.7) 

where S  ̂ is the arc length per unit angle of the 

perimeter of the two dimensional projection of body i . 

The quantity bp' is given by 

sr = I vi-'' t . (A.8) 

r  ' ' '  n When the expression for bp of Equation A.8 is substi­

tuted into Equation A.7, we find that 

^=1 s > 

where  ̂̂  / "à ( 1 and = 

5 h'" /  ̂ êj ) ̂  ( V' . The integral of 

Equation A.9 can be numerically integrated. 

Another expression which must be derived in terms of 
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supporting functions is S , the ratio of the surface area 

on an excluded volume for two colliding rigid ovaloids to 

a unit solid angle of the normal to the surface of the 

volume. To that end we first examine the quantity 

•vAiich is the equivalent of for body I . By taking 

ratios in the limit of the arc lengths which are the sides 

of differential parallelograms on the body i surface and 

on a unit sphere surface, we can write that 

i w" " vi" \ 

or, equivalently, that 

5"' = 11 11 (A. 11) 

where 11 6 is the determinant of the second rank 

tensor A in the subspace perpendicular to • Insert­

ing the expression for G " ̂  of Equation A.5 into Equa­

tion A.11, we have that 

S"> = S"' (A.12) 

where 

- W- i" . (A.13) 
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and t 4*̂ ' . In the case in which the body 

i is described by a supporting function of the form of 

Equation A.6, we find that 

S-- [ 1  11 <. .ê-.êr) 

I r - C  1  - - k  

C C 

idiere i• êv'- (i'-.?;" 1 À"' and 

It can easily be shown that a body t is convex if and 

only if S'" is positive everywhere. 

The supporting function, W , for the excluded volume 

of the two colliding bodies ̂  and  ̂ is given by 

h = Vi . (a.15) 

At the point of contact t and are antiparallel 

and the normal to the excluded volume at the center of mass 

of body ̂  , A , is parallel to . Then we obtain from 

Equations A.12, A.13 and A.15 that 

(A.16) 
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An advantage of the supporting function is that it 

leads to an immediate expression for S of Equation A.16. 
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APPENDIX B. PROOF OF BILATERAL NORMALIZATION 

One proof of bilateral normalization begins with the 

expression of Equation 2.27 for the specific transition 

rate for collisions vrtiich is 

vj, (. 1 1 k \ v 4'̂ "!= & c v- ̂  (B.l) 

where again the starred state is that unique precollision 

state from which the unmarked state evolves by the two 

particle Liouville theorem and where 12^1= I 

\ , Action by the time reversal operator on both 

sides of Equation B.l yields 

{1'a'R \ 12 I I $ 11'-(B.2) 

where the subscript on the starred state means that the 

process vihich connects it to the unmarked state takes place 

in the presence of a time reversed field and where we have 

used the property of of Equation 2.25. The primed and 

the unprimed states can be switched in Equation B.2 to give 

^ 1 a R \ ^ S (1- 1 

^ (1 - 3%^ ) (b.3) 

where the asterisks refer to the unique postcollision state 
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to which the primed state evolves in the presence of a 

time reversed field. From Equation B.l we have that 

Ua-y'l (BA) 

where the primed, starred state on the precollision hem­

isphere is the unique state from which the primed state 

evolves. Integration of Equations B.3 and B.̂ - over the 

unmarked state variables gives respectively 

\ a 1 y 1 vjp 11 % R \ L'y \ \ (B.5) 

and 

(,di  ̂J 1 Wp I 1'%' RI t 3 , (5.6) 

These integrals are finite because the integration over b 

is limited to a disc of radius R . The reason for this 

limitation is that the collision sphere limits the area 

over which a collision can be said to occur. Therefore 

we can write that 

^dli^da ^ I %'-z'9. \ \ 1 (B.7) 

which is the expression of bilateral normalization. 

A second proof can be derived from the equation for 
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the time rate of change of along a phase trajectory 

which is 

- (. I'l' R \ 1=1 . (B.8) 

At equilibrium the two particle distribution function can 

be written as a product of the single particle distribution 

functions of the local properties. From conservation of 

energy we have that 

C >4^ 

Therefore at equilibrium we can write Equation B.8 as 

0= 4̂  1 d I Ui' I (. V ̂  ̂  Wl' 

- V; il'a'R. ] (B.9) 

where we have used the fact that does not change 

along its phase trajectory. There are two ways for Equa­

tion B.9 to be zero: the integral over x' and a' could 

be orthogonal to or that same integral could 

itself be zero. The former case might be true at one 

temperature but at a different temperature v  ̂

would change while the integral over i' and a' would not. 
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Hence orthogonality can not be the case and the integral 

over %' and i' must be zero i.e. 

o - ( a 1' \d§' LvĴ  ( 1 ̂  n. \ 1 2' R') -

Wp R CB. 

which is again the statement of bilateral normalization. 
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APPENDIX C. ISOTROPIC SIXTH RAM TENSORS 

The isotropic sixth rank tensors which are traceless 

and syumetric on their first two and last two indices are 

T;" = lO ̂  ̂V) ̂ vV vU V uyy 

-11 u 0 + y yij * u , uu u 

-|(u - y uu y t w u^^^yuy 

and 

T/" = $ + 1 y u y 

where U = . 
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APPDNEIX D. CONTRACTION AND PROJECTION SCHEME 

FOR ( uTENSORS 

As a result of the operations of Chapter 4, a typical 

collision integral can be written as 

Jo"'" 

lu/fl (D.l) 

where we bring the projection operators and the isotropic 

tensor J through the integral over K SO that the inte­

grand becomes a scalar by means of the operations , 

which we call projection, and , vAiich we call con­

traction. For- general potentials in the Kihara approxi­

mation, the quantity ( u v> can be evaluated in terms of 

tensors composed of and  ̂. The integrand 

of Equation D.l can then be reduced to a scalar by taking 

projections and contractions on in that order. 

This is tedious for tensors of high rank because of the 

large number of permutations in y  ̂ . 

For even rank tensors, considerable simplification is 

achieved by reversing the order of projection and contrac­

tion. The process of contracting first can be shown on two 

projection operators and I 
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as follows: 

p p p 
~rvi^ -m, L' tl' ^ ^ I' ,&'t' 

 ̂  ̂  ̂  ̂ t (V\i  ̂̂  ni. ̂  (D.2) 

where as in Chapter h Greek indices extend from one to four 

and Latin indices extend from one to three. We call the 

new notation of Equation D.2 a contraction product which is 

a second rank tensor in the 12-D space. There are only 

16 possible contraction products between the projection 

operators , Pĉ  , gw and . The key to vAiat 

we will do is that the projections can act on these con­

traction products in only a limited of unique ways. A 

method is desired to find this limited number of resulting 

unique forms and their frequencies of appearance. 

By examining the tu,Y) tensors of Chapter 4, we see 

that the result of the operation of upon a tensor 

composed of and  ̂can be expressed as a 

product of two types of projection linkages of contraction 

products: one, which we call a chain, is of the form 

and the other, which we call a loop, is of the form 
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where signifies either Uor . In this 

appendix we refer to a product of loops and chains as a 

combination. It can be shown that all permutations of the 

superscript indices of a in all iK ' -g; 

appear in a given with the same coefficient. 

Hence we need not distinguish the superscripts of the 

—•) sum over all permutations of them when 

evaluating a combination. Explicitly the 4 and  ̂

must be permuted throughout every position in every chain 

and loop in a combination. 

In order to limit the number combinations which we 

must consider at one time, we concentrate on the projec­

tions upon a (y/%) one class at a time. In this regard 

a class is taken to include all tensors, regardless of their 

which have the same number of 

K Is in their first u and last vr indices. 

The next steps are to produce a complete set of non-

duplicate chains and loops, to investigate their symmetry 

properties for counting purposes and to form unique com­

binations of chains and loops so that exactly all the con­

traction products in the integral appear and so that there 

are (for the class under consideration) the correct number 
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of first u and last ̂  projection operators projected 

onto k's. Lastly we compute the appearance number of 

each of these combinations. We perform these steps first 

for the integrals of the kind in Equation D.l for which 

the index is two (called " 1-2" integrals) and then for 

those for which  ̂is one (called "1-1" integrals). 

For the "1-2" integrals, unique chains may be pro­

duced by first considering all the different available 

contraction products which cannot be written as transposes 

of each other. We then can immediately project these con­

traction products onto two < ' s and obtain the chains con­

taining one contraction product. Two identical lists of 

these single contraction products can be projected upon the 

same 'according to Table D.l. In this table we list in 

the fourth column the unique projections to be formed from 

6 of one list and b of the other list and in the fifth 

column the symmetry of each projection. To avoid duplica­

tion we project together the n'th member of the a list 

with the same member and all higher numbered members of 

the B list. One can see that the resulting tensors given 

in column four can be projected onto two S's to form a 

unique list of chains of two contraction products long. 

Whenever we form a tensor of more than one contraction 

product, we test to see whether the integral has the con­

traction products contained therein and if not we discard 
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it. The chains containing three contraction products can 

be formed by breaking apart each of the tensors containing 

two contraction products (labeled c ) and inserting one at 

a time the whole list of single contraction products 

(labeled g ) according to the formula 

The unique g can be formed by the procedure outlined in 

Table D.2. The F tensors can be projected onto two ̂  *s 

to form the chains of contraction product length three. 

The above processes can be carried out iteratively to 

build up the chains to any length required. The symmetry 

description, that is whether the chain has a different 

transpose or not, is given automatically. 

The loops can be generated from the list of chains by 

replacing the K * g with another U'""! The only problem with 

this list is that the members are not unique. The procedur 

we use to remedy this situation begins with the determina­

tion of the symmetry of the loop. This symmetry is char­

acterized by the group order of the symmetry type to 

which the loop written on a circle with equal spacing be­

tween its contraction products belongs. It is convenient 

to assign numbers one to 16 to the possible contraction 

products. The numerical codes of the contraction products 

in a loop derived from a chain are designated \ where the 
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subscript denotes the left to right order of the contrac­

tion product in the loop written from a chain. The 

are expanded in a Fourier series 

s (d.3) 

where m is the number of contraction products in the loop 

and t = . This expansion is suggested by the fact 

that rotational symmetry means a periodic relationship 

between the To find the , we merely take the 

Fourier transform 

When there is an ""/p -fold axis of rotation, it is the 

case that 

4 - 4 ap " ' /p 

V = ( 

cd. 5) 
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and we can write Equation D.5 as 

"i/p p (in A?  ̂ . 

The summation over k in Equation D.6 can be performed first 

and it is equal to zero unless  ̂is some multiple of m/p . 

To find the rotational symmetry, the subscript of the first 

nonzero is found and that is the fold of the proper 

axis of rotation. When there is a a; plane of reflection, 

then the transpose of the chain equivalent to the loop gen­

erates another loop (transposed loop) which is only dif­

ferent from the first loop by a rotation. If one denotes 

the transposed loop by primes and by ̂  the angle of ro­

tation by which a loop may be brought into coincidence with 

the transposed loop (in the case that a exists), then 

V - r 
rn-r- m 
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(d.7) 

By Equation D.5 we can write that 

(d.8) 

where is the unit step function with discontinuity at 

zero. The variable of summation in Equation D.8 can be 

changed from A to - Jk + r with the result that 

The significance of Equation D.9 is that if a av plane 

exists then every nonzero is related to by a phase 

angle which is the same multiple of ̂  . This condition 

is therefore a test. If there is reflectional symmetry 

and rotational symmetry, the group is with order 2n. 

If there is no reflectional symmetry, the group is with 

order n. 

The list of nonunique loops may now be culled using 

a procedure similar to the testing for reflectional and 

rotational symmetry. If two loops are the same they can 

only be out of coincidence by a rotation, by a reflection 

(D.9) 
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or by both. If they are off by a rotation then their 's 

only differ by a phase factor multiplied by i . If they 

are off by a reflection or both a rotation and a reflection 

then the transposed loop of one has a-l ' s which differ by a 

phase factor multiplied by ̂  from the 's of the origi­

nal loop of the other. By comparison of the 's of one 

loop with the » s and ' s of the others duplicates may 

be eliminated and a list of unique loops found. 

The process of combining lists of loops and chains in 

unique ways is straightforward because order is unimportant. 

Those combinations which do not have the proper number of 

the first u or the last vr projection operators projected 

onto K ' s for the class under consideration or do not have 

exactly the contraction products appearing in the integral 

are merely discarded. 

The appearance number of a combination is just the 

number of different ways this combination can be produced 

arising from the different permutations of indices of the 

tensor class upon which we are projecting. For "1-2" 

integrals the process of randomly placing the available 

contraction products in their proper positions in the 

combination of loops and chains can be carried out in 

 ̂ It 
II IT-
V- I 

ways where b, is the number of available contraction 
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products of the i th kind and  ̂symbolizes the summa­

tion over all b,. which refer to contraction products 

which are equal to their transpose. This number represents 

overcounting whenever there is symmetry in the combination. 

Combinations formed by random placement but connected by 

this symmetry are not the result of projections on different 

permutations of a tensor class. When we divide out the 

factors which correct for overcounting from symmetry, the 

appearance number of a combination for "1-2" integrals 

becomes 

(|, b, ! iU' (%V. ? 

where is the number of chains lAich are equal to their 

transpose, 5. is the number of like chains of the rth 

type, is the order of the group to which the tth loop 

belongs and is the number of like loops of the v th 

type. 

There are many similarities in the formulation of the 

appearance numbers for a combination in the case of a "1-1" 

integral. However this must be treated as a special case 

because we no longer have projection operators which are 

naturally marked as to whether they are one of the first 

u or of the last . Therefore we will artificially mark 

these projection operators at appropriate instances with 
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an 1 if they are one of the first u and  ̂ if they are 

one of the last v . Temporarily disregarding this artifice, 

we produce the chains and the loops in the same way as be­

fore. Then we give only those contraction products which 

are on the ends of chains all possible ji,a. character noting 

that this might change the symmetry of a chain. The com­

binations are then done in the same way using this expanded 

list of chains. 

The counting number of the way the projection oper­

ators can be randomly placed in a combination is now more 

complicated. The random placement now must first fill the 

spaces of the marked ends of the chains from the pool of 

available contraction products which are considered as 

marked and then fill the unmarked remaining spaces from 

the pool of all remaining contraction products considered 

as unmarked. We derive that the random placement can be 

done in 

T[ D i i 
h  ̂ "C Id -

\0 
,1 
u' l  

ways where Z [  is the total number of  ̂ type available 

contraction products considered as marked, <̂ 1 is the num­

ber of ( type available marked contraction products used 
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to full up the ends of chains, is the total number of 

 ̂ type unmarked contraction products available and 

is the number of  ̂ type unmarked contraction products 

used to fill up the ends of the chains. The factors which 

adjust for overcounting from symmetry are the same as in 

the "1-2" integrals. 
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Table D.l. The unique projections  ̂® ̂  ®  ̂which can be formed from two 
contraction products  ̂, ft and the symmetry of these projections 

Does &=% ? 5 4  6  ?  Unique Projections Symmetry 

Ŷ(3S -Ye:; 

r Af&xW 0.1 G 

U'"' e.v c -- c" 

Yes: 
00 
H 

N̂o- No - (a % 
c = 
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Table D,1 (Continued) 

Does 6= ̂  ? ^ ? ±ill? Unique Projections Symmetry 

/Yes 

/ 

Yes 

 ̂0.1 y 0.% % 

% 0.7, -a"-'' 0.1 ^ 
 ̂ w Oî i 6 

A U ̂ o ̂ % 
w % -

A" U''' e.x 8 

C* a » 

c 2 6̂  = X. 

C f C 

c + ĉ  

C + Ç 

H 
00 
fU 

X 

Yes 

No — 

A ©.X ®.x B 

A B: 

f A O.a U 
Li-l 

G 

(Lf t « 

Ç * 

& * S 
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Table D.2. The unique projections  ̂ y*'"'©.» D g,̂  4̂ ' formed from 

a u"' «.X. (% T c for any three contraction products a, ̂  , ç 

and the symmetry of these projections 

Does ? Unique Projections Symmetry 

Yes i 6 0 o., y W % F -- F ' 

( A 0 ®.x U ̂ B FT F" 

-Yes ( A 0.% 0,1 D U I F F F 
00 (jj 

No — A 01% Li Q ®''>- U & 

A 0,1 y"" (f ®.X 

Ftp' 
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